Protective Effects of Water Extract from Cuscutae Semen on Ketoconazole-Induced Oxidative Stress in Testicular Damage Male Rats

토사자 추출물의 ketoconazole로 유도된 고환 독성 흰쥐의 산화적 스트레스 저해효과

  • Kim, Sung-Hoon (Department of Oriental Pathology, College of Oriental Medicine, Kyunghee University) ;
  • Choi, Jong -Won (College of Pharmacy, Kyungsung University)
  • 김성훈 (경희대학교 한의과대학 병리학교실) ;
  • 최종원 (경성대학교 약학대학)
  • Received : 2011.04.29
  • Accepted : 2011.06.10
  • Published : 2011.06.25

Abstract

Ketoconazole (KET) is an antifungal drug with a broad spectrum of activity that also induces reproductive toxicity in humans and animals. KET inhibits C17-20 lyase which blocks the conversion of 17 ${\alpha}$-hydroxyprogesterone to androstenedione. The effect of Cuscutae semen(CS) extract against KET-induced testicular damage was evaluated in male rats. CS extract was administered orally (100 and 200 mg/kg) for 26 days. Three weeks after CS extract administration, KET was CS-administered intraperitoneally at a dose of 100 mg/kg once a day for 5 days. KET-induced reproductive toxicity was associated with clear reductions of the weights of testes and epididymides, sperm indices and serum testosterone levels. In addition, marked oxidative damage to testicular lipids and alterations of natural antioxidant enzymes were reported in association with KET toxicity. Most of the KET-induced effects were greatly decreased with the concomitant application of CS extract. This study suggests a protective role of Cuscutae semen extract that could be attributed to its antioxidant properties.

Keywords

References

  1. Kwon, K.B., Kim, B.R., Hwang, I.J., Kim, E.K., Kim, G.H., Ko, K.H., Choi, Y.S., Zhang, G.G., Rho, S.I., Han, D.W., Cha, S., Park, D.Y., Ryu, D.G. Effects of Gamimajeonojahwan extract on the sexual function in male rats. Korean J. Oriental Physiology & Pathology 18(5):1410-1471, 2004.
  2. Chandra, A., Shephen, E.H. Impaired fecunfity in the United States; 1982-1995, Fam. Plann. Perspect., 30: 34-42, 1998. https://doi.org/10.2307/2991524
  3. Mosher, W.D. Reproductive inpairements in the United States; 1965-1982. Demography., 22: 415-430, 1985. https://doi.org/10.2307/2061069
  4. Foresta, C., Moro, E., Ferlin, A.Z. Y chromosome microdeletions and alterations of spermatogenesis. Endocr. Rev. 22: 226-239, 2001. https://doi.org/10.1210/er.22.2.226
  5. Pan, H.J., Sun, H.X., Pan, Y.J. Adjuvant effect of ethanol extract of Semen cuscutae on the immune responses to ovalbumin in mice. J. Ethnopharm. 99(1):99-103, 2005. https://doi.org/10.1016/j.jep.2005.02.007
  6. Yen, F.L., Wu, T.H., Lin, L.T., Lin, C.C. Hpatoprotective and antioxidant effects f Cuscuta chinensis against acetaminophen-induced hepatotoxicity in rats. J. Ethnopharm. 111(1):123-128, 2007. https://doi.org/10.1016/j.jep.2006.11.003
  7. Xiong, Y.B., Zhou, C.H. The effect of extracts from herba epidedii and semen cuscutac on the function of male reproduction. Chinese Pharmaceutical J. 29: 89-91, 1994.
  8. Du, X.M., Kohinata, T., Guo, Y.T., Kazumoto, M. Components of the ether insoluble resin glycoside-like fraction of mice from Cuscuta chinensis. Phytochemistry 48: 843-850, 1998. https://doi.org/10.1016/S0031-9422(97)00990-4
  9. Montplaisir, S., Nabarra, B., Drouhet, E. Susceptibility and resistance of Candida to 5-fluorocytosine in relation to the cell wall ultrastructure. Antimicrob. Agents Chemother 9(6):1028-1032, 1976. https://doi.org/10.1128/AAC.9.6.1028
  10. Van den Bossche, H., Willemsens, G., Cools, W., Cornelissesn, F., Lauwers, W.F., Van Cutsem, J.M. In vitro and in vivo effects of the antimycotic drug ketoconazole on sterol synthesis. Antimicrob. Agents Chemother. 17(6):922-928, 1980. https://doi.org/10.1128/AAC.17.6.922
  11. Tamara, G.A., Nina, K.P. Female-induced sexual arousal in male mice and rats; behavioral and testosterone response. Hormones and Behavior 46(5):544-550, 2004. https://doi.org/10.1016/j.yhbeh.2004.05.010
  12. Maija, D., Helena, C., Baiba, S., Liga, Z., Osvalds, P., Tatjana, Z., Ivars, K., Edgars, L., Irina, B. Effect of inhibiting carntine biosynthesis on male rat sexual performance. J. Phy. Beh 95(3):341-347, 2008. https://doi.org/10.1016/j.physbeh.2008.06.012
  13. Yokoi, K., Uthus, E.O., Nielsen, F.H. Nickel deficiency diminishes sperm quantity and movement in rats. Bio. Trace Element. Res. 93(1-3):141-154, 2003. https://doi.org/10.1385/BTER:93:1-3:141
  14. Mortimer, D. The male factor in infertility. Part 1: Semen analysis. Current problems in obstetrics., Year Book Medical Publishers. 7: 87-95, 1985.
  15. Ohkawa, H., Ohishi, N., Yaki, K. Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95(2):351-358, 1979. https://doi.org/10.1016/0003-2697(79)90738-3
  16. Ellman, G.L. Tissue sulfhydryl group. Arch. Biochem. Biophys. 82(1):70-77, 1959. https://doi.org/10.1016/0003-9861(59)90090-6
  17. Marklund, S., Marklund, G. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47(3):469-474, 1974. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  18. Aebi, H. Catalase. In Method of enzymatic analysis., H. U. Bergmeter, editor. Academic Press 2: 673-684, 1974.
  19. Pagila, E.D., Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocytes glutathione peroxidase. J. Lab. Clin. Med. 70(1):158-169, 1967.
  20. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Rendall, R.J. Protein measurement with folin phenol reagent. J. Biol. Chem. 193(1):265-275, 1951.
  21. Paick, J.S. Role of reactive oxygen species in male infertility. Kor. J. Androl. 21(1):1-11, 2003.
  22. Iwasaki, A., Gagnon, C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril 57(2):409-416, 1992. https://doi.org/10.1016/S0015-0282(16)54855-9
  23. Amin, A. Ketoconazole-induced testicular damage in rats reduced by Gentiana extract. Experi. Toxi. Patho., 59(6):377-384, 2008. https://doi.org/10.1016/j.etp.2007.10.008
  24. Beauchamp, C., Fridovich, I. A mechanism for the production of ethylene from methional: The generation of the hydroxyl radical by xanthine oxidase. J. Biol. Chem., 245(18):4641-4646, 1970.
  25. Simonm, R.H., Scoggin, C.M., Patterson, D. Hydrogen peroxide causes the fatal injury to human fibroblasts exposed to oxygen radicals. J. Biol. Chem. 256(14):7181-7186, 1981.
  26. Halliwell, B. Biochemical mechanism accounting for the toxic action of oxygen on living organisms. the key role of superoxide dismutase. Cell. Biol. Int. Rep. 2(2):113-128, 1978. https://doi.org/10.1016/0309-1651(78)90032-2
  27. Susan, M.D., Darry, L.F. Normobaric oxygen toxicity of the lung. New. Engl. J. Med. 303(2):76-86, 1980. https://doi.org/10.1056/NEJM198007103030204
  28. Freman, B.A., Crapo. J.D. Biology of disease : Free radicals and tissue injury. Lab. Invest. 47(5):412-426, 1982.
  29. Leibovitz, B.E., Siegel, B.V. Aspects of free radical reactions in biological systems. Aging. J. Gerontol. 35(1):45-56, 1980. https://doi.org/10.1093/geronj/35.1.45
  30. Little, C., O'Brine, P.J. An intracellular GSH-peroxidase with a lipid peroxide substrate. Biochem. Biophys. Res. Commum. 31(2):145-150, 1968. https://doi.org/10.1016/0006-291X(68)90721-3
  31. Lawrene, R.A., Burk, R.F. Glutathione peroxidase activity in selenium deficiet rat liver. Biochem. Biophys. Res. Commun. 71(4):952-958, 1976. https://doi.org/10.1016/0006-291X(76)90747-6
  32. Reddy, C.C., Tu, C.P.D., Burgess, J.R., Ho, C.Y., Scholz, R.W., Massaro E.J. Evidence for the occurrence of selenium-independent glutathione peroxidase activity in rat liver microsome. Biochem. Biophys. Res. Commun. 101:970-978, 1981. https://doi.org/10.1016/0006-291X(81)91844-1
  33. Mantha, S.V., Kalra, J., Prasad, K. Effects of probucol on hypercholesterolemia-induced changes in antioxidant enzymes. Life Sciences 58: 503-509, 1996. https://doi.org/10.1016/0024-3205(95)02315-1