Screening of Antioxidative Effect and Suppressive Effect of LDL Oxidation of Euryale ferox Salisbury

Euryale ferox Salisbury의 항산화효과 및 LDL 산화 억제효과 탐색

  • Kim, Young-Hwan (Department of Diagnostics, College of Oriental Medicine, Dongguk University) ;
  • Lee, Min-Ja (Institute of Oriental Medicine, College of Oriental Medicine, Dongguk University) ;
  • Lee, Hye-Sook (Department of Diagnostics, College of Oriental Medicine, Dongguk University) ;
  • Kim, Jung-Guk (Department of Diagnostics, College of Oriental Medicine, Dongguk University) ;
  • Park, Won-Hwan (Department of Diagnostics, College of Oriental Medicine, Dongguk University)
  • 김영환 (동국대학교 한의과대학 진단학교실) ;
  • 이민자 (동국대학교 한의학연구소) ;
  • 이혜숙 (동국대학교 한의과대학 진단학교실) ;
  • 김정국 (동국대학교 한의과대학 진단학교실) ;
  • 박원환 (동국대학교 한의과대학 진단학교실)
  • Received : 2010.11.22
  • Accepted : 2011.02.11
  • Published : 2011.02.25

Abstract

Topical natural antioxidants are a useful strategy for the prevention of oxidative stress mediated cardiovascular disease including atherosclerosis. From the viewpoint of this underlying principle, the screening of natural plant extracts with scavenging activity for pro-oxidant reactive species is a primary requirement for the development of new topical antioxidant formulations. Euryale ferox Salisbury (EF) is botanical name and it's pharmaceutical name is EURYALES SEMEN (ES). The stems and branchs of EF have been used as a traditional herbal medicine for the treatment of dysentery, diarrhea, leucorrhoea, incontinence and paralysis of joint. In this study, the antioxidant activity of extract from EF was studied in vitro methods by measuring the antioxidant activity and free radical scavenging activity by TEAC and DPPH, measuring the scavenging effects on reactive oxygen species (ROS) [superoxide anion, hydroxyl radical] and on reactive nitrogen species (RNS) [nitric oxide and peroxynitrite] as well as measuring the inhibitory effect on $Cu^{2+}$-induced human LDL oxidation. The EF extracts were found to have a potent scavenging activity, as well as an inhibitory effect on LDL oxidation. In conclusion, the EF extracts have antioxidative effects in vitro system, which can be used for developing pharmaceutical drug against oxidative stress and chronic degenerative disease such as atherosclerosis.

Keywords

References

  1. 全國韓醫科大學 共同敎材編纂委員會 共編, 本草學, 서울, 永林社, pp 233-234, 1991.
  2. 鄭普變 辛民敎共編, 鄕藥(生藥)大辭典, 서울, 圖書出版 永林社, pp 938-940, 1990.
  3. Row, L.C., Ho, J.C., Chen, C.M. Cerebrosides and tocopherol trimers from the seeds of Euryale ferox. J Nat Prod. 70: 1214-1217, 2007. https://doi.org/10.1021/np070095j
  4. Zhao, H.R., Zhao, S.X., Sun, C.Q., Guillaume, D. Glucosylsterols in extracts of Euryale ferox identified by high resolution NMR and mass spectrometry. J Lipid Res. 30: 1633-1637, 1989.
  5. Lee, S.E., Ju, E.M., Kim, J.H. Antioxidant activity of extracts from Euryale ferox seed. Exp Mol Med. 34: 100-106, 2002. https://doi.org/10.1038/emm.2002.15
  6. Puri, A., Sahai, R., Singh, K.L., Saxena, K.C. Immunostimulant activity of dry fruits and plant materials used in indian traditional medical system for mothers after child birth and invalids. J Ethnopharmacol. 71: 89-92, 2000. https://doi.org/10.1016/S0378-8741(99)00181-6
  7. Das, S., Der, P., Raychaudhuri, U., Maulik, N., Das, D.K. The effect of Euryale ferox (Makhana), an herb of aquatic origin, on myocardial ischemic reperfusion injury. Mol Cell Biochem. 289(1-2):55-63, 2006. https://doi.org/10.1007/s11010-006-9147-1
  8. Aruoma, O.I. Free radicals, oxidative stress and antioxidants in human health and disease. J Am Oil Chem Soc. 75: 199-212, 1998. https://doi.org/10.1007/s11746-998-0032-9
  9. Finkel, T., Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239-247, 2000. https://doi.org/10.1038/35041687
  10. Frank, M.S., Martijn, K. Randomized clinical trials on the effects of dietary fat and carbohydrate on plasma lipoprotein and cardiovascular disease. Am J Med. 113: 13-24, 2002. https://doi.org/10.1016/S0002-9343(01)00987-1
  11. Libby, P. Inflammation in atherosclerosis. Nature 420: 868-874, 2002. https://doi.org/10.1038/nature01323
  12. Berliner, J.A., Heinecke, J.W. The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med. 20: 707-727, 1996. https://doi.org/10.1016/0891-5849(95)02173-6
  13. Meagher, E., Rader, D.J. Antioxidant theraphy and atherosclerosis: animal and human studies. Trends Cardiovasc Med. 11: 162-165, 2001. https://doi.org/10.1016/S1050-1738(01)00105-0
  14. Yokoyama, M. Oxidant stress and atherosclerosis. Cur Opin Pharmacol. 4: 110-115, 2004. https://doi.org/10.1016/j.coph.2003.12.004
  15. Kim, H.J., Ahn, M.S., Kim, G.H., Kang, M.H. Antioxidant and antimicrobial activity of Pleurotus eryngii extracts prepared from different aerial part. Korean J Food Sci Technol. 38: 799-804, 2006.
  16. Ali, K.A., Abdelhak, M., George, B., Panagiotis, K. Tea and herbal infusions: Their antioxidant activity and phenolic propolis. Food Chem. 89: 27-36, 2005. https://doi.org/10.1016/j.foodchem.2004.01.075
  17. Barene, A.L. Toxicological and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J Am Oil Chem Soc. 52: 59-63, 1975. https://doi.org/10.1007/BF02901825
  18. Farbstein, D., Kozak-Blickstein, A., Levy, A.P. Antioxidant vitamins and their use in preventing cardiovascular disease. Molecules 15(11):8098-8110, 2010. https://doi.org/10.3390/molecules15118098
  19. Massaro, M., Scoditti, E., Carluccio, M.A., De Caterina, R. Nutraceuticals and prevention of atherosclerosis: focus on omega-3 polyunsaturated fatty acids and Mediterranean diet polyphenols. Cardiovasc Ther. 28(4):e13-e19, 2010. https://doi.org/10.1111/j.1755-5922.2010.00211.x
  20. de Pascual-Teresa, S., Moreno, D.A., García-Viguera, C. Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci. 11(4):1679-703, 2010. https://doi.org/10.3390/ijms11041679
  21. Kujala, T.S., Loponen, J.M., Klika, K.D., Pihlaja, K. Phenolic and betacyanins in red beetroot (Beta vulgaris) root: distribution and effects of cold storage on the content of total phenolics and three individual compounds. J Agri Food Chem. 48: 5338-5342, 2000. https://doi.org/10.1021/jf000523q
  22. Roberta, R.E., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 26: 1231-1237, 1999. https://doi.org/10.1016/S0891-5849(98)00315-3
  23. Miller, N.J., Rice-Evans, C., Davies, M.J., Gopinathan, V., Milner, A.A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci. 84: 407-412, 1993.
  24. Blois, M.S. Antioxidant determination by the use of stable free radical. Nature 26: 1199-1200, 1958.
  25. Gotoh, N., Niki, E. Rates of interactions of superoxide with vitamin E, vitamin C and related compounds as measured by chemiluminescence. Biochem Biophys Acta 1115: 201-207, 1992. https://doi.org/10.1016/0304-4165(92)90054-X
  26. Halliwell, B., Gutteridge, J.M. Role of free radicals and catalytic metalions in human disease: an overview. Method Enzymol. 186: 1-85, 1990.
  27. Nagata, N., Momose, K., Ishida, Y. Inhibitory effects of catecholamines and anti-oxidants on the fluorescence reactionof 4,5-diaminofluorescein, DAF-2, a novel indicator of nitric oxide. J Biochem. (Tokyo) 125: 658-661, 1999. https://doi.org/10.1093/oxfordjournals.jbchem.a022333
  28. Crow, J.P. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1: 145-157, 1997. https://doi.org/10.1006/niox.1996.0113
  29. Yagi, K.A. Simple fluometric assay for lipoperoxide in blood plasma. Biochem Med. 15: 212-216, 1976. https://doi.org/10.1016/0006-2944(76)90049-1
  30. Rice-Evans, C., Miller, N., Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 20: 933-956, 1996. https://doi.org/10.1016/0891-5849(95)02227-9
  31. Kaur, C., Kapoor, H.C. Anti-oxidant activity and total phenolic content of some Asian vegetables. Int J Food Sci Technol. 37: 153-161, 2002. https://doi.org/10.1046/j.1365-2621.2002.00552.x
  32. Maisuthisakul, P., Suttajit, M., Pongsawatmanit, R. Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem. 100(4):1409-1418, 2007. https://doi.org/10.1016/j.foodchem.2005.11.032
  33. Awika, J.M., Rooney, L.W., Wu, X.L., Prior, R.L., Cisneros-Zevallos, L. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J Agric Food Chem. 51: 6657-6662, 2003. https://doi.org/10.1021/jf034790i
  34. Molyneux, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. J Sci Tech. 26: 211-219, 2004.
  35. Halliwell, B., Gutteridge, J.M.C. Oxygen toxicology, oxygen radicals, transition metals and disease. Biochem J. 219: 1-4, 1984.
  36. Patel, R.P., McAndrew, J., Sellak, H., White, C.R., Jo, H., Freeman, B.A., Darley-Usmar, V.M. Biological aspects of reactive nitrogen species. Biochim Biophys Acta 1411: 385-400, 1999. https://doi.org/10.1016/S0005-2728(99)00028-6
  37. Salvemini, D., Misko, T.P., Masferrer, J.L., Seibert, K., Currie, M.G., Needleman, P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci. USA 90: 7240-7244, 1993. https://doi.org/10.1073/pnas.90.15.7240
  38. Channon, K.M., Qian, H., George, S.E. Nitric oxide synthase in atherosclerosis and vascular injury: insights from experimental gene therapy. Arterioscler Thromb Vasc Biol. 20: 1873-1881, 2000. https://doi.org/10.1161/01.ATV.20.8.1873
  39. Witzum, J.L. The role of monocytes and oxidized LDL in atherosclerosis. In: Atherosclerosis Reviews. Leaf A. Weber PC. (eds). Ravan Press, New York, USA. 21: 59-69, 1990.
  40. Raya, A.A., Raya, S.A. Inflammation: A pivotal link between autoimmune diseases and atherosclerosis. Autoimmun Rev. 5: 331-337, 2006. https://doi.org/10.1016/j.autrev.2005.12.006