배양한 흰쥐 대뇌세포의 저산소증 모델에서 황련(黃連)이 유전자 표현에 미치는 영향

Effects of Gene expression by Coptidis chinesis FRANCH. in a Hypoxic Model of Cultured Rat Cortical Cells

  • 황주원 (동국대학교 한의과대학 내과학교실) ;
  • 김경훈 (동국대학교 한의과대학 내과학교실) ;
  • 신길조 (동국대학교 한의과대학 내과학교실) ;
  • 문일수 (동국대학교 의과대학 해부학교실)
  • Hwang, Joo-Won (Dept. of Internal Medicine, College of Oriental Medicine, Dong-Guk University) ;
  • Kim, Kyung-Hun (Dept. of Internal Medicine, College of Oriental Medicine, Dong-Guk University) ;
  • Shin, Gil-Cho (Dept. of Internal Medicine, College of Oriental Medicine, Dong-Guk University) ;
  • Moon, Il-Soo (Dept. of Anatomy, College of Medicine, Dong-Guk University)
  • 발행 : 2011.06.30

초록

Objectives : The purpose of this investigation was to evaluate the effects of Coptidis chinesis FRANCH. on the alteration of gene expression in a hypoxic model using cultured rat cortical cells. Methods : E18 rat cortical cells were grown in neurobasal medium containing B27 supplement. On 12 DIV, water extract from Coptidis chinesis FRANCH. was added ($20{\mu}g/ml$) to the culture media 4 hrs. On 14 DIV, cells were given hypoxic insult (2% $O_2$/5% $CO_2$, $37^{\circ}C$, 3 hrs), returned to normoxia and cultured for another 24 hrs. Total RNA was extracted from Coptidis chinesis FRANCH. treated and untreated cultures and alterations in the gene expression were analysed by microarray using rat 5K-TwinChips. Results : Effects on some of the genes whose functions were implicated in neural viability were as follows: the expression of apoptosis-related genes such as Clu (Global M = 1.3), of presynaptic inhibition's genes such as Penk-rs (Global M = 1.97), and of innate immuniti's such as Crp (Global M = 1.95), Defensin (Global M = 2.14), and Dnase1l3 (Global M = 1.57) increased. The expression of neurotrophic genes such as S100b (Global M = 1.42), and $NF{\kappa}B$ (Global M = 2.04) increased. Conclusions : Analysing the genes expressed on microarray, shows Coptidis chinesis FRANCH.protects cells by increasing viability and neural nutrition.

키워드

참고문헌

  1. Ames III A. CNS energy metabolism as related to function. Brain Res Brain Res Rev 2000;34(1-2):42-68. https://doi.org/10.1016/S0165-0173(00)00038-2
  2. Palmer C, Vannucci RC, Towfighi J. Reduction of perinatal hypoxic-ischemic brain damage with allopurinol. Pediatr Res 1990;27(4):332-6. https://doi.org/10.1203/00006450-199004000-00003
  3. Silver IA, Erecinska M. Ion homeostasis in rat brain in vivo: intra- and extracellular $Ca^{2+}$ and $H^{+}$ in the hippocampus during recovery from short-term, transient ischemia. J Cereb Blood Flow Metab 1992;12(5):759-72. https://doi.org/10.1038/jcbfm.1992.107
  4. Wingrave JM, Schaecher KE, Sribnick EA, Wilford GG, Ray SK, Hazen-Martin DJ, et al. Early induction of secondary injury factors causing activation of calpain and mitochondria-mediated neuronal apoptosis following spinal cord injury in rats. J Neurosci Res 2003;73(1):95-104. https://doi.org/10.1002/jnr.10607
  5. Rego AC, Oliveira CR. Mitochondrial Dysfunction and Reactive Oxygen Species in Excitotoxicity and Apoptosis: Implications for the Pathogenesis of Neurodegenerative Diseases. Neurochem Res 2003;28(10):1563-74. https://doi.org/10.1023/A:1025682611389
  6. Gorman AM, Ceccatelli S, Orreinus S. Role of mitochondria in neuronal apoptosis. Dev Neurosci 2000;22(5-6):348-58. https://doi.org/10.1159/000017460
  7. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995;270(5235):467-70. https://doi.org/10.1126/science.270.5235.467
  8. Duggan DJ, Bittner M, Chen Y, Meltzer P,Trent JM. Expression profiling using cDNA microarrays. Nat Genet 1999;21(1):10-14.
  9. Whitney LW, Becker KG, Tresser NJ, Caballero -Ramos CI, Munson PJ, Prabhu VV, et al. Analysis of gene expression in mutiple sclerosis lesions using cDNA microarrays. Ann Neurol 1999;46(3):425-8. https://doi.org/10.1002/1531-8249(199909)46:3<425::AID-ANA22>3.0.CO;2-O
  10. 全國韓醫科大學 本草學敎授. 本草學. 4판. 서울: 永林社; 1998, p. 180-1.
  11. 최용순, 이영일, 이상영. 황련뿌리 추출물 성분이 흰쥐의 지질대사에 미치는 효과. 생약학회지 1996;27(3):246-53.
  12. 김동일, 정희재, 정승기, 이형구. 오미자, 황련이 BEAS-2B 인간 기관지상피세포의 IL-6, IL-16, GM-CSF mRNA level에 미치는 영향. 경희의학 2001;17(2):199-213.
  13. 이봄비, 함대현, 이혜정, 심인섭. 황련이 반복적인 코카인 투여로 인한 보행성 활동량과 c-Fos발현에 미치는 효과. 한국심리학회지 2001;13(1):57-69.
  14. 최주리, 정승현. 흰쥐 대뇌세포의 저산소증 모델에서 黃連의 활성산소 억제 및 미토콘드리아막전위 유지 효능. 학위논문(석사). 동국대학교대학원; 2005.
  15. 지형준, 이상인. 대한약전외 한약(생약) 규격집 주해서. 서울: 한국메디칼인덱스사; 1997, p. 153.
  16. Brewer GJ, Torricelli JR, Evege EK, Price PJ. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 1993;35(5):567-76. https://doi.org/10.1002/jnr.490350513
  17. Ji LL, Leeuwenburgh C, Leichtweis S, Gore M, Fiebig R, Hollander J, et al. Oxidative stress and aging. Role of exercise and its influences on antioxidant systems. Ann N Y Acad Sci 1998;854:102-17. https://doi.org/10.1111/j.1749-6632.1998.tb09896.x
  18. Cai J, Jones DP. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem 1998;273(19):11401-4. https://doi.org/10.1074/jbc.273.19.11401
  19. Griffiths EJ. Mitochondria-potential role in cell life and death. Cardiovasc Res 2000;46(1):24-7. https://doi.org/10.1016/S0008-6363(00)00020-1
  20. 吳普述著. 神農本草經. 초판. 서울: 醫聖堂; 2003, p. 79.
  21. 新文豊出版公司. 新編中藥大辭典第三冊. 臺北: 新文豊出版公司; 1982, p. 2109-11.
  22. 신정인, 서운교. 황련의 Helicobacter pylori 에 대한 향균 효과. 대한한방내과학회지 2003;24(2):269-82.
  23. Henkel T, Machleidt T, Alkalay I, Kronke M, Ben-Neriah Y, Baeuerle PA. Rapid proteolysis of IB- is necessary for activation of transcription factor NF-$\kappa$B. Nature 1993;365:182-5. https://doi.org/10.1038/365182a0
  24. Wu M, Lee H, Bellas RE, Schauer SL, Arsura M, Katz D, et al. Inhibition of NF-$\kappa$B/Rel induces apoptosis of murine B cells. EMBO J 1996;15(17):4682-90.
  25. Grimm S, Bauer MKA, Baeuerle PA, Schulze -Osthoff K. Bcl-2 down-regulates the activity of transcription factor NF-kappaB induced upon apoptosis. J Cell Biol 1996;134:13-23. https://doi.org/10.1083/jcb.134.1.13
  26. Walmsley SR, Print C, Farahi N, Peyssonnaux C, Johnson RS, Cramer T, et al. Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med 2005;201(1):105-15. https://doi.org/10.1084/jem.20040624
  27. Napirei M, Wulf S, Eulitz D, Mannherz HG, Kloeckl T. Comparative characterization of rat deoxyribonuclease 1 (Dnase1) and murine deoxyribonuclease 1-like 3(Dnase1l3). Biochem J 2005;389(Pt 2):355-64. https://doi.org/10.1042/BJ20042124
  28. Holmgren L, Szeles A, Rajnavölgyi E, Folkman J, Klein G, Ernberg I, et al. Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood 1999;93:3956-63.
  29. Wilber A, O'Connor TP, Lu ML, Karimi A, Schneider MC. Dnase1l3 deficiency in lupus-prone MRL and NZB/W F1 mice. Clin Exp Immunol 2003;134(1):46-52. https://doi.org/10.1046/j.1365-2249.2003.02267.x
  30. Heizmann CW, Fritz G, Schafer BW. S100 proteins: structure, functions and pathology. Front. Biosci 2002;7:d1356-68.
  31. Nishi M, Kawata M, Azmitia EC. S100beta promotes the extension of microtubule associated protein2 (MAP2)-immunoreactive neurites retracted after colchicine treatment in rat spinal cord culture. Neurosci. Lett 1997;229(3):212-4. https://doi.org/10.1016/S0304-3940(97)00443-6
  32. Brewton LS, Haddad L, Azmitia EC. Colchicine -induced cytoskeletal collapse and apoptosis in N-18 neuroblastoma cultures is rapidly reversed by applied S-100beta. Brain Res 2001;912(1):9-16. https://doi.org/10.1016/S0006-8993(01)02519-7
  33. Goncalves DS, Lenz G, Karl J, Goncalves CA, Rodnight R. Extracellular S100B protein modulates ERK in astrocyte cultures. Neuroreport 2000;11(4):807-9. https://doi.org/10.1097/00001756-200003200-00030
  34. Mcadory BS, Van Eldik LJ, Norden JJ. S100B, a neurotropic protein that modulates neuronal protein phosphorylation, is upregulated during lesion-induced collateral sprouting and reactive synaptogenesis. Brain Res 1998;813(1):211-7. https://doi.org/10.1016/S0006-8993(98)01014-2
  35. Herrmann M, Curio N, Jost S, Grubich C, Ebert AD, Fork ML, et al. Release of biochemical markers of damage to neuronal and glial braintissue is associated with shortand long-term neuropsychological outcome after traumatic brain injury. J Neurol Neurosurg Psychiatry 2001;70(1):95-100. https://doi.org/10.1136/jnnp.70.1.95
  36. Van Eldik LJ, Wainwright MS. The Janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restorative Neurology and Neuroscience 2003;21(3-4):97-108.
  37. Miyake H, Hara I, Kamidono S, Gleave ME, Eto H. Resistance to cytotoxic chemotherapy -induced apoptosis in human prostate cancer cells is associated with intracellular clusterin expression. Oncol Rep 2003;10:469-73.
  38. Trougakos IP, So A, Jansen B, Gleave ME, Gonos ES. Silencing expression of the clusterin/ apolipoprotein J gene in human cancer cells using small interfering RNA induces spontaneous apoptosis, reduced growth ability, and cell sensitization to genotoxic and oxidative stress. Cancer Res 2004;64:1834-42. https://doi.org/10.1158/0008-5472.CAN-03-2664
  39. Zhang H, Kim JK, Edwards CA, Xu Z, Taichman R, Wang CY. Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol 2005;7(9):909-15. https://doi.org/10.1038/ncb1291
  40. Shakib K, Norman JT, Fine LG, Brown LR, Godovac-Zimmermann J. Proteomics profiling of nuclear proteins for kidney fibroblasts suggests hypoxia, meiosis, and cancer may meet in the nucleus. Proteomics 2005;5(11):2819-38. https://doi.org/10.1002/pmic.200401108
  41. Shimizu T, Wolfe LS. Arachidonic cascade and signal transduction. J Neurochem 1990;55(1):1-15. https://doi.org/10.1111/j.1471-4159.1990.tb08813.x
  42. Li Y, Maher P, Schubert D. A role for 12- lipoxygenase in nerve cell death caused by glutathione depletion. Neuron 1997;19(2):453-63. https://doi.org/10.1016/S0896-6273(00)80953-8
  43. Zhang Y, Wang H, Li J, Jimenez DA, Levitan ES, Aizenman E, et al. Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J Neurosci 2004;24(47):10616-27. https://doi.org/10.1523/JNEUROSCI.2469-04.2004
  44. Wang H, Li J, Follett PL, Zhang Y, Cotanche DA, Jensen FE, et al. 12-Lipoxygenase plays a key role in cell death caused by glutathione depletion and arachidonic acid in rat oligodendrocytes. Eur J Neurosci 2004;20(8): 2049-58. https://doi.org/10.1111/j.1460-9568.2004.03650.x
  45. Weisenhorn DM, Roback J, Young AN, Wainer BH. Cellular aspects of trophic actions in the nervous system. Int Rev Cytol 1999;189:177-265.
  46. Dallner C, Woods AG, Deller T, Kirsch M, Hofmann HD. CNTF and CNTF receptor alpha are constitutively expressed by astrocytes in the mouse brain. Glia 2002;37(4):374-8. https://doi.org/10.1002/glia.10048
  47. Peterson WM, Wang Q, Tzekova R, Wiegand SJ. Ciliary neurotrophic factor and stress stimuli activate the Jak-STAT pathway in retinal neurons and glia. J Neurosci 2000;20(11):4081-90.
  48. Park CK, Ju WK, Hofmann HD, Kirsch M, Ki Kang J, Chun MH, et al. Differential regulation of ciliary neurotrophic factor and its receptor in the rat hippocampus following transient global ischemia. Brain Res 2000;861(2):345-53. https://doi.org/10.1016/S0006-8993(00)02045-X
  49. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, et al. $\beta$-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 1999;286(5439):525-8. https://doi.org/10.1126/science.286.5439.525
  50. Steel DM, Whitehead AS. The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunol Today 1994;15(2):81-8. https://doi.org/10.1016/0167-5699(94)90138-4
  51. Burke AP, Tracy RP, Kolodgie F, Malcom GT, Zieske A, Kutys R, et al. Elevated C-reactive protein values and atherosclerosis in sudden coronary death: association with different pathologies. Circulation 2002;105:2019-23. https://doi.org/10.1161/01.CIR.0000015507.29953.38
  52. Wolbink GJ, Brouwer MC, Buysmann S, ten Berge IJ, Hack CE. CRP-mediated activation of complement in vivo. J Immunol 1996;157(1):473-9.
  53. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Eng J Med 1999;340(6):448-54. https://doi.org/10.1056/NEJM199902113400607
  54. Yasojima K, Schwab C, McGeer EG, McGeer PL. Human neurons generate C-reactive protein and amyloid P: upregulation in Alzheimer's disease. Brain Res 2000;887(1):80-9. https://doi.org/10.1016/S0006-8993(00)02970-X
  55. Jiang ZG, North RA. Pre-and postsynaptic inhibition by opioids in rat striatum. J Neurosci 1992;12(1):356-61.
  56. Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor. Trends Neurosci 1987;10:299-302. https://doi.org/10.1016/0166-2236(87)90177-9
  57. 김성배, 정승현, 신길조, 이원철. 배양한 흰쥐대뇌세포의 저산소증 모델에서 黃芩이 유전자 표현에 미치는 영향. 대한한방내과학회지 2004;25(4-2):324-36.
  58. 백진원, 이영표, 김완식, 정승현, 신길조, 이원철. 배양한 흰쥐 대뇌세포의 저산소증 모델에서 蘇合香元이 유전자 표현에 미치는 영향. 대한한의학회지 2004;25(2):127-37.
  59. 박동완, 김완식, 배철환, 정승현, 신길조, 이원철. 배양한 흰쥐 대뇌세포의 저산소증 모델에서 牛黃淸心元이 유전자 표현에 미치는 영향. 대한한의학회지 2004;25(3):123-36.