DOI QR코드

DOI QR Code

애기장대에서 두 액포막 칼슘펌프 돌연변이에 의하여 유도되는 세포사멸 표현형의 액포수식효소(VPE) 돌연변이에 의한 억제

The vacuolar processing enzyme (VPE) mutation suppresses an HR-like cell death induced by the double knockout mutant of vacuolar Ca2+-ATPases in Arabidopsis

  • 박형철 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작 연구소) ;
  • 이상민 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작 연구소) ;
  • 김호수 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작 연구소) ;
  • 정우식 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작 연구소)
  • Park, Hyeong-Cheol (Division of Applied Life Science (BK21 program), and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Lee, Sang-Min (Division of Applied Life Science (BK21 program), and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Kim, Ho-Soo (Division of Applied Life Science (BK21 program), and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Chung, Woo-Sik (Division of Applied Life Science (BK21 program), and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
  • 투고 : 2011.04.15
  • 심사 : 2011.04.29
  • 발행 : 2011.06.30

초록

칼슘은 동물과 마찬가지로 식물에서도 다양한 신호를 전달하는 2차 매개체로 잘 알려져 있다. 특히, 세포사멸 현상을 유도하는 신호전달에 칼슘의 관여는 잘 보고되어 있다. 최근 발표된 논문에서 액포막에 존재하는 $Ca^{2+}$-ATPases(ACA4와 ACA11)가 이중으로 돌연변이된 식물체의 잎에서 세포사멸 표현형을 관찰했으며, 이러한 세포사멸 현상이 salicylic acid (SA)에 의존적이라고 보고했다. 또한 앞선 연구들에서 vacuolar processing enzymes (VPEs)이 생물학적 또는 비생물학적 스트레스에 의해서 유발되는 SA에 의해서 활성화 된다고 보고하였다. 본 연구에서는 액포막 $Ca^{2+}$-ATPases (ACA4와 ACA11)가 이중으로 돌연변이 된 식물체에서 VPEs의 유전자 발현이 상당히 증가되어 있고 효소 활성도 증가됨을 확인했다. 이 결과를 바탕으로, aca4/aca11/avpe와 aca4/aca11/${\gamma}$vpe 그리고, aca4/aca11/avpe/${\gamma}$vpe의 삼중과 사중 돌연변이체를 구축했다. 이들과 aca4/aca11의 이중 돌연변이체의 세포사멸 표현형을 비교 관찰한 결과, 삼중과 사중 돌연변이에서 세포사멸 현상이 일정기간 억제되는 것을 관찰했다. 또한, 삼중과 사중의 돌연변이체에서 VPEs의 효소 활성이 많이 감소되는 현상으로 나타났다. 결론적으로, $Ca^{2+}$-ATPases (ACA4와 ACA11)가 이중으로 돌연변이된 식물체에서는 SA가 유발되며, 이러한 SA에 의해서 VPEs의 단백질이 활성화되어 세포사멸 현상이 발생할 것으로 사료된다.

Calcium ($Ca^{2+}$) signals have been implicated in regulating plant development and responses to the environmental stresses including a programmed cell death pathway. In animals and plants, cytosolic $Ca^{2+}$ signals have been involved in the activation of programmed cell death (PCD). Recently, we reported that disruption of Arabidopsis vacuolar $\b{A}$utoinhibited $\underline{C}a^{2+}$-$\b{A}$TPases (ACAs), ACA4 and ACA11, resulted in the activation of a salicylic acid-dependent programmed cell death pathway. Although extensive studies have revealed various components of a PCD in plants, executors to directly induce PCD are well unknown. Here, we provide that the vacuolar processing enzymes (VPEs) are involved in a PCD induced by the double knockout mutant of vacuolar $Ca^{2+}$-ATPases in Arabidopsis. The gene expression of VPE was rapidly up-regulated and the enzyme activity of VPE was increased in the double mutant plants. We also generated aca4/aca11/avpe, aca4/aca11/${\gamma}$vpe and aca4/aca11/avpe/${\gamma}$vpe mutant plants. Although cell death phenotype of the double mutant plants was not completely disappeared in the triple and quadruple mutant plants, the triple and quadruple mutant plants showed to significantly delay cell death phenotype of the double mutant plants. These results suggest that the VPE is involved in the HR-like cell death in the double mutant of vacuolar $Ca^{2+}$-ATPases in Arabidopsis.

키워드

참고문헌

  1. Berridge M J, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1: 11-21 https://doi.org/10.1038/35036035
  2. Boursiac Y, Lee SM, Romanowsky S, Blank R, Sladek C, Chung WS, Harper JF (2010) Disruption of the vacuolar calcium- ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway. Plant physiol 154:1158-1171 https://doi.org/10.1104/pp.110.159038
  3. Chichkova N, Kim SH, Titova ES, Kalkum M, Morozov VS, Rubtsov YP, Kalinina NO, Taliansky ME, Vartapetian AB (2004) A plant caspase-like protease activated during the hypersensitive response. Plant Cell 16:157-171 https://doi.org/10.1105/tpc.017889
  4. Clarke PG, Clasrke S (1999) Historic apoptosis. Nature 16:230
  5. Evans DE, Williams LE (1998) P-type calcium ATPases in higher plants: biochemical, molecular and functional properties. Biochim Biophys Acta 9:1-25
  6. Geisler M, Axelsen KB, Harper JF, Palmgren MG (2000) Molecular aspects of higher plant P-type $Ca^{2+}$-ATPases. Biochim Biophys Acta 1465:52-78 https://doi.org/10.1016/S0005-2736(00)00131-0
  7. George L, Romanowsky SM, Harper JF, Sharrock RA (2008) The ACA10 $Ca^{2+}$-ATPase regulates adult vegetative development and influorescence architecture in Arabidopsis. Plant physiol 146:716-728
  8. Hara-Nishimura I, Hatsugai N, Nakaune S, Kuroyanagi M, Nishimura M (2005) Vacuolar processing enzyme: an executor of plant cell death. Curr Opin Plant Biol 8:404-408 https://doi.org/10.1016/j.pbi.2005.05.016
  9. Hara-Nishimura I, Shimada T, Hiraiwa N, Nishimura M (1995) Vacuolar processing enzyme responsible for maturation of seed proteins. J Plant Physiol 145:632-640 https://doi.org/10.1016/S0176-1617(11)81275-7
  10. Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura I (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855-858 https://doi.org/10.1126/science.1099859
  11. Hetherington AM, Brownlee C (2004) The Generation of $Ca^{2+}$ signals in plants. Annu Rev Plant Biol 55:401-427 https://doi.org/10.1146/annurev.arplant.55.031903.141624
  12. Kinoshita T, Yamada K, Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I (1999) Vacuolar processing enzyme is upregulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions. Plant J 19: 43-53 https://doi.org/10.1046/j.1365-313X.1999.00497.x
  13. Kuroyanagi M, Yamada K, Hatsugai N, Kondo M, Nishimura M, Hara-Nishimura I (2005) Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana. J Biol Chem 280:32914-32920 https://doi.org/10.1074/jbc.M504476200
  14. Lam E, del Pozo O (2000) Caspase-like protease involvement in the control of plant cell death. Plant Mol Boil 44:417-428 https://doi.org/10.1023/A:1026509012695
  15. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15: 473-479 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  16. Ott M, Zhivotovsky B, Orrenius S (2007) Role of cardiolipin in cytochrome c release from mitochondria. Cell Death Differ 14:1243-1247 https://doi.org/10.1038/sj.cdd.4402135
  17. Raff M (1998) Cell suicide for beginners. Nature 396:119-122 https://doi.org/10.1038/24055
  18. Riedl SJ, Salvesen GS (2007) The apoptosome: signaling platform of cell death. Nature Rev Mol Cell Biol 8:405-413 https://doi.org/10.1038/nrm2153
  19. Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11:691-706 https://doi.org/10.1105/tpc.11.4.691
  20. Schiott M, Romanowsky SM, Baekgaard L, Jakobsen MK, Palmgren MG, Harper JF (2004) A plant plasma membrane $Ca^{2+}$ pump is required for normal pollen tube growth and fertilization. Proc Natl Acad Sci USA 101:9502-9507 https://doi.org/10.1073/pnas.0401542101
  21. Sze H, Liang F, Hwang I, Curran AC, Harper JF (2000) Diversity and regulation of plant $Ca^{2+}$ pumps: insights from expression in yeast. Annu Rev Plant Physiol Plant Mol Biol 51:433-462 https://doi.org/10.1146/annurev.arplant.51.1.433
  22. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251-306 https://doi.org/10.1016/S0074-7696(08)62312-8
  23. Yu T, Wang X, Purring-Koch C, Wei Y, McLendon GLA (2001) A mutational epitope for cytochrome c binding to the apoptosis protease activation factor-1. J Biol Chem 276:13034-13038 https://doi.org/10.1074/jbc.M009773200
  24. Zamzami Z, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev 2:67-71 https://doi.org/10.1038/35048073