DOI QR코드

DOI QR Code

Lipopolysaccharide에 의한 BV2 세포의 염증 반응에 대한 파 추출물의 저해 활성

Extracts of Allium fistulosum Attenuates Pro-Inflammatory Action in the Lipopolysaccharide-Stimulated BV2 Microglia Cells

  • 박신형 (동의대학교 한의과대학 병리학교실) ;
  • 김정인 (인제대학교 의생명공학대학 식품생명과학부) ;
  • 정영기 (동아대학교 생명공학과 및 대학원 의생명과학과) ;
  • 최영현 (동의대학교 생화학교실 및 한의학연구소)
  • Park, Shin-Hyoung (Department of Pathology, College of Oriental Medicine and Research Institute of Oriental Medicine, Dongeui University) ;
  • Kim, Jung-In (School of Food and Life Science, College of Biomedical Sciences & Engineering, InJe University) ;
  • Jeong, Yong-Kee (Department of Medical Bioscience, Graduate School and Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Choi, Yung-Hyun (Department of Biochemistry, College of Oriental Medicine and Research Institute of Oriental Medicine, Dongeui University)
  • 투고 : 2011.02.15
  • 심사 : 2011.02.23
  • 발행 : 2011.06.30

초록

본 연구에서는 파의 항염증 효과를 밝히고 그 생화학적 기전 해석을 위해 LPS로 활성화된 BV2 microglia를 이용하여 iNOS, COX-2 및 염증성 cytokine의 발현 및 그 산물에 미치는 파 추출물의 영향을 조사하였다. 그 결과 파 추출물은 LPS 처리에 의한 BV2 세포의 iNOS의 발현을 전사 및 번역 수준에서 처리 농도 의존적으로 억제시켰으며, 특히 파 전체 에탄올 추출물(EEWA)의 효과가 가장 탁월하였다. LPS로 유도한 COX-2의 mRNA 및 단백질 발현 역시 파 추출물 처리에 의하여 감소되었으며 뿌리 에탄올 추출물(EERA) 처리군에서 가장 현저한 억제가 관찰되었다. 아울러 염증 반응의 또 다른 주요인자인 염증성 cytokine들(TNF-${\alpha}$, IL-$1{\beta}$ 및 IL-6)의 mRNA 변화를 조사한 결과 파 추출물이 대체적으로 이들 cytokine의 발현을 억제하는 경향을 보였으며, 최종산물인 TNF-${\alpha}$와 IL-6의 생성량 역시 유의한 수준은 아니었으나 감소하는 경향을 보였다. 본 연구의 결과는 파의 추출물은 iNOS, COX-2 및 염증성 cytokine의 발현을 조절함으로서 신경염증 반응을 효과적으로 억제하며, 향후 지속적인 연구가 필요하지만 신경 보호 작용에 탁월한 효능이 있음을 보여주는 것으로 생각된다.

Microglia are central nervous system (CNS)-resident professional macrophages that function as the principal immune cells responding to pathological stimulations in the CNS. Activation of microglia, induced by various pathogens, protects neurons and maintains homeostasis in the CNS, but severe activation causes inflammatory responses secreting various neurotoxic molecules such as nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$) and pro-inflammatory cytokines. Allium fistulosum, a member of the onion family, is mainly cultivated for consumption, as well as medicinal use in Oriental medicine. It has been reported that A. fistulosum has various biological effects such as anti-oxidant, anti-platelet aggregation, anti-fungus and anti-cholesterol synthesis, however there has been no research about the anti-inflammatory effects of A. fistulosum extracts. In this study, it was undertaken to explore the functions of A. fistulosum as a suppressor of neuronal inflammation by using BV2 microglia cells. As a result, it was found that four kinds of extracts of A. fistulosum effectively reduced the expressions of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) at both mRNA and protein levels, and also attenuated pro-inflammatory cytokines such as tumor necrosis alpha (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$) and interleukin-6 (IL-6) at the mRNA level in BV2 stimulated by lipopolysaccharide (LPS). In addition, the extracts of A. fistulosum attenuated the release of NO markedly, as well as resulting in slight decreases of TNF-${\alpha}$ and IL-6 production, the effects of which were most significant when treated with ethyl alcohol extract from the whole A. fistulosum. In conclusion, the data indicated that the anti-inflammatory actions of A. fistulosum against BV2 microglia cells is through the down-regulation of iNOS, COX2 and pro-inflammatory cytokines such as TNF-${\alpha}$ and IL-6, and these effects are expected to help in the protection of nerve tissues by suppressions of neuronal inflammation in various neurodegenerative diseases.

키워드

참고문헌

  1. Araki, E., C. Forster, J. M. Dubinsky, M. E. Ross, and C. Iadecola. 2001. Cyclooxygenase-2 inhibitor ns-398 protects neuronal cultures from lipopolysaccharide-induced neurotoxicity. Stroke 32, 2370-2375. https://doi.org/10.1161/hs1001.096057
  2. Arimoto, T. and G. Bing. 2003. Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration. Neurobiol. Dis. 12, 35-45. https://doi.org/10.1016/S0969-9961(02)00017-7
  3. Boje, K. M. and P. K. Arora. 1992. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 587, 250-256. https://doi.org/10.1016/0006-8993(92)91004-X
  4. Dinarello, C. A. 1999. Cytokines as endogenous pyrogens. J. Infect. Dis. 179, 294-304. https://doi.org/10.1086/314577
  5. Elkabes, S., E. M. DiCicco-Bloom, and I. B. Black. 1996. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J. Neurosci. 16, 2508-2521.
  6. Gonzalez-Scarano, F. and G. Baltuch. 1999. Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 22, 219-240. https://doi.org/10.1146/annurev.neuro.22.1.219
  7. Guzik, T. J., R. Korbut, and T. Adamek-Guzik. 2003. Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Phamacol. 43, 469-487.
  8. Hunot, S, F. Boissière, B. Faucheux, B. Brugg, A. Mouatt-Prigent, Y. Agid, and E. C. Hirsch. 1996. Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience 72, 355-363. https://doi.org/10.1016/0306-4522(95)00578-1
  9. Kang, M. J., J. H. Kim, H. N. Choi, M. J. Kim, J. H. Han, J. H. Lee, and J. L. Kim. 2010. Hypoglycemic effects of Welsh onion in an animal model of diabetes mellitus. Nutr. Res. Pract. 4, 486-491. https://doi.org/10.4162/nrp.2010.4.6.486
  10. Knott, C., G. Stern, and G. P. Wilkin. 2000. Inflammatory regulators in Parkinson''s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol. Cell Neurosci. 16, 724-739. https://doi.org/10.1006/mcne.2000.0914
  11. Le, W., D. Rowe, W. Xie, I. Ortiz, Y. He, and S. H. Appel. 2001. Microglial activation and dopaminergic cell injury: an in vitro model relevant to Parkinson''s disease. J. Neurosci. 21, 8447-8455.
  12. Li, J., O. Baud, T. Vartanian, J. J. Volpe, and P. A. Rosenberg. 2005. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc. Natl. Acad. Sci. USA 102, 9936-9941. https://doi.org/10.1073/pnas.0502552102
  13. McGeer, P. L., S. Itagaki, B. E. Boyes, and E. G. McGeer. 1988. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson''s and Alzheimer''s disease brains. Neurology 38, 1285-1291. https://doi.org/10.1212/WNL.38.8.1285
  14. McGeer, P. L., T. Kawamata, D. G. Walker, G. Akiyama, I. Tooyama, and E. G. McGeer. 1993. Microglia in degenerative neurological disease. Glia 7, 84-92. https://doi.org/10.1002/glia.440070114
  15. Melchior, B., S. S. Puntambekar, and M. J. Carson. 2006. Microglia and the control of autoreactive T cell responses. Neurochem. Int. 49, 145-153. https://doi.org/10.1016/j.neuint.2006.04.002
  16. Minghetti, L., D. T. Walsh, G. Levi, and V. H. Perry. 1999. In vivo expression of cyclooxygenase-2 in rat brain following intraparenchymal injection of bacterial endotoxin and inflammatory cytokines. J. Neuropathol. Exp. Neurol. 58, 1184-1191. https://doi.org/10.1097/00005072-199911000-00008
  17. Nakajima, K., S. Honda, Y. Tohyama, Y. Imai, S. Kohsaka, and T. Kurihara. 2001. Neurotrophin secretion from cultured microglia. J. Neurosci. 65, 322-331. https://doi.org/10.1002/jnr.1157
  18. Park, J. R., J. C. Park, and S. H. Choi. 1997. Screening and characterization of anticholesterogenic substances from edible plant extracts. J. Korean Soc. Food Sci. Nutr. 26, 236-241.
  19. Patal, T. N., M. H. Shishehbor, and D. L. Bhatt. 2007. A review of high-dose statin theraoy: targeting cholesterol and inflammation in atherosclerosis. Eur. Heart J. 28, 664-672. https://doi.org/10.1093/eurheartj/ehl445
  20. Perlmutter, L. S., E. Barron, and H. C. Chui. 1990. Morphologic association between microglia and senile plaque amyloid in Alzheimer's disease. Neurosci. Lett. 119, 32-36. https://doi.org/10.1016/0304-3940(90)90748-X
  21. Sang, S., A. Lao, Y. Wang, C. K. Chin, R. T. Rosen, and C. T. Ho. 2002. Antifungal constituents from the seeds of Allium fistulosum L. J. Agric. Food Chem. 50, 6318-6321. https://doi.org/10.1021/jf025651o
  22. Schmid, C. D., L. N. Sautkulis, P. E. Danielson, J. Cooper, K. W. Hasel, B. S. Hilbush, J. G. Sutcliffe, and M. J. Carson. 2002. Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. J. Neurochem. 83, 1309-1320. https://doi.org/10.1046/j.1471-4159.2002.01243.x
  23. Seo, D. C., S. M. Chung, J. Y. Lee, Y. S. Kim, and J. H. Chung. 1996. Effect of oriental Onion (Allium fistulosum) on platelet aggregation. J. Fd. Hyg. Safety 11, 273-276.
  24. Stajner, D., R. Igic, B. M. Popovic, and D. J. Malencic. 2008. Comparative study of antioxidant properties of wild growing and cultivated Allium species. Phytother. Res. 22, 113-117. https://doi.org/10.1002/ptr.2278
  25. Teismann, P., M. Vila, D. K. Choi, K. Tieu, D. C. Wu, V. Jackson-Lewis, and S. Przedborski. 2003. COX-2 and neurodegeneration in Parkinson''s disease. Ann. N.Y. Acad. Sci. 991, 272-277.
  26. Wegiel, J., K. C. Wang, M. Tarnawski, and B. Lach. 2000. Microglia cells are the driving force in fibrillar plaque formation, whereas astrocytes are a leading factor in plague degradation. Acta Neuropathol. 100, 356-364. https://doi.org/10.1007/s004010000199
  27. Wegiel, J. and H. M. Wisniewski. 1990. The complex of microglial cells and amyloid star in three-dimensional reconstruction. Acta Neuropathol. 81, 116-124. https://doi.org/10.1007/BF00334499

피인용 문헌

  1. Anti-Inflammatory Activity of Ethanol Extracts from Hizikia fusiformis Fermented with Lactic Acid Bacteria in LPS-Stimulated RAW264.7 Macrophages vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1450
  2. Anti-inflammatory Effect of Allium hookeri Root Methanol Extract in LPS-induced RAW264.7 Cells vol.41, pp.11, 2012, https://doi.org/10.3746/jkfn.2012.41.11.1645
  3. Anti-inflammatory Activity of Hizikia fusiformis Extracts Fermented with Lactobacillus casei in LPS-stimulated RAW 264.7 Macrophages vol.30, pp.1, 2015, https://doi.org/10.7841/ksbbj.2015.30.1.38
  4. Enhancement of Anti-inflammatory Activity by Fermentation of Sargassum siliquanstrum vol.26, pp.3, 2016, https://doi.org/10.5352/JLS.2016.26.3.318