A NOTE ON THE PARAMETRIZATION OF MULTIWAVELETS OF DGHM TYPE ${ }^{\dagger}$

SEOK YOON HWANG

Abstract

Multiwavelet coefficients can be constructed from the multiscaling coefficients by using the factorization for paraunitary matrices. In this paper we present a procedure for parametrizing all possible multiwavelet coefficients corresponding to the multiscaling coefficients of DGHM type.

AMS Mathematics Subject Classification : 42C40. Key words and phrases : Orthogonal scaling functions, prarmetrizations of multiwavelets.

1. Introduction

In [2,1], Daubechies gave perfect formulas for the constructions of wavelets. However, it seems that there is not such a good formula of similar structure for multiwavelets. Donovan et al.[3,6] described a method for constructing orthogonal multiwavelets associated with orthogonal scaling functions of some type. And also Donovan et al. [4] presented an alternate construction of multiwavelet coefficients of DGHM type. This paper gives a procedure for parametrizing all possible multiwavelet coefficients associated with two scaling functions of the same type as $[6,7]$.

2. Parametrization of Multiwavelets of DGHM Type

Assume that $\Phi=\left[\phi_{1}, \phi_{2}\right]^{T}$ is an orthonormal scaling vector of DGHM type, that is
(1) Φ is continuous and supported on $[-1,1]$
(2) ϕ_{1} is not supported on either $[-1,0]$ or $[0,1]$, and $\phi_{1}(0) \neq 0$
(3) ϕ_{2} is supported on $[0,1]$

[^0]Then the scaling vector Φ satisfies the following refinement equation:

$$
\Phi(x)=\sqrt{2} \sum_{k=-2}^{1} C(k) \Phi(2 x-k)
$$

where the 2×2 matrices $C(k)=\left[\begin{array}{ll}c_{11}(k) & c_{12}(k) \\ c_{21}(k) & c_{22}(k)\end{array}\right]$ are the scaling coefficients for Φ. Since ϕ_{2} is supported on $[0,1]$, we have

$$
c_{21}(k), c_{22}(k)=0, \text { for } k=-2,-1
$$

By the fact that ϕ_{1} is continuous and nonzero at 0 , we have $c_{11}(0)=\frac{1}{\sqrt{2}}$. Let

$$
\begin{aligned}
C_{1 L} & =\left[c_{12}(-2) c_{11}(-1) c_{12}(-1)\right], \\
C_{1 R} & =\left[c_{12}(0) c_{11}(1) c_{12}(1)\right], \text { and } \\
C_{2} & =\left[c_{22}(0) c_{21}(1) c_{22}(1)\right] .
\end{aligned}
$$

Then the orthonormality of Φ implies
(1) $C_{1 L}, C_{1 R}$ and C_{2} are orthogonal.
(2) $\left\|\phi_{1}\right\|^{2}=\left\|C_{1 L}\right\|^{2}+\frac{1}{2}+\left\|C_{1 R}\right\|^{2}=1$

Now we construct the multiwavelet coefficients. If we assume that $\Psi=$ $\left[\psi_{1}, \psi_{2}\right]^{T}$ is a wavelet vector supported on $[-1,1]$, then it must be of the form

$$
\Psi(x)=\sqrt{2} \sum_{k=-2}^{1} D(k) \Phi(2 x-k)
$$

where the 2×2 matrices $D(k)=\left[\begin{array}{ll}d_{11}(k) & d_{12}(k) \\ d_{21}(k) & d_{22}(k)\end{array}\right]$ are the multiwavelet coefficients for Ψ. Let

$$
\begin{aligned}
D_{i L} & =\left[d_{i 2}(-2) d_{i 1}(-1) d_{i 2}(-1)\right], \\
D_{i R} & =\left[d_{i 2}(0) d_{i 1}(1) d_{i 2}(1)\right], i=1,2
\end{aligned}
$$

And let

$$
\begin{aligned}
\Phi_{L} & =\sqrt{2}\left[\phi_{2}(2 \cdot+2) \phi_{1}(2 \cdot+1) \phi_{2}(2 \cdot+1)\right]^{T} \\
\Phi_{R} & =\sqrt{2}\left[\phi_{2}(2 \cdot) \phi_{1}(2 \cdot-1) \phi_{2}(2 \cdot-1)\right]^{T}
\end{aligned}
$$

Then

$$
\psi_{i}=D_{i L} \Phi_{L}+d_{i 1}(0) \sqrt{2} \phi_{1}(2 \cdot)+D_{i R} \Phi_{R}
$$

Since ψ_{i} is orthogonal to ϕ_{2} and $\phi_{1}(\cdot-1), D_{i R}$ is orthogonal to $C_{1 L}$ and C_{2}. Hence $D_{i R}$ must be a multiple of $C_{1 R}$. Similarly, $D_{i L}$ must be a multiple of $C_{1 L}$. So Ψ must be of the form

$$
\psi_{i}=\alpha_{i L} C_{1 L} \Phi_{L}+d_{i 1}(0) \phi_{1}(2 \cdot)+\alpha_{i R} C_{1 R} \Phi_{R}, \text { for some } \alpha_{i L}, \alpha_{i R} \in \mathbf{R}
$$

Since $C_{1 L}$ is orthogonal to $C_{1 R}, \psi_{i}$ is orthogonal to the nonzero shifts of a ψ_{j} for $i \neq j$. If we note the remaining orthogonality conditions

$$
\left\langle\psi_{i}, \phi_{1}\right\rangle=0, \text { and }\left\langle\psi_{i}, \psi_{j}\right\rangle=\delta_{i j}, i=1,2,
$$

then we can complete the construction of orthonormal wavelets ψ_{i}, by finding the solutions $\alpha_{i L}, d_{i L}(0), \alpha_{i R}$ of the following equations:
(1) $\left\|C_{1} L\right\|^{2}+\left\|C_{1 R}\right\|^{2}=\frac{1}{2}$
(2) $\alpha_{i L}\left\|C_{1 L}\right\|^{2}+\frac{1}{\sqrt{2}} d_{i 1}(0)+\alpha_{i R}\left\|C_{1 R}\right\|^{2}=0$
(3) $\alpha_{i L} \alpha_{j L}\left\|C_{1 L}\right\|^{2}+d_{i 1}(0) d_{j 1}(0)+\alpha_{i R} \alpha_{j R}\left\|C_{1 R}\right\|^{2}=\delta_{i j}$.

It can be modified to the problem to find two solutions $\left(x_{i}, y_{i}, z_{i}\right), i=1,2$, of equations
(1) $\left\|C_{1 L}\right\|^{2}+\left\|C_{1 R}\right\|^{2}=\frac{1}{2}$
(2) $\left\|C_{1 L}\right\|^{2} x+\frac{1}{\sqrt{2}} y+\left\|C_{1 R}\right\|^{2} z=0$
(3) $\left\|C_{1 L}\right\|^{2} x^{2}+y^{2}+\left\|C_{1 R}\right\|^{2} z^{2}=1$
such that $\left(\left\|C_{1 L}\right\|^{2} x_{i}, y_{i},\left\|C_{1 R}\right\|^{2} z_{i}\right), i=1,2$ are orthogonal.
Let Q be a 3×2 matrix defined by

$$
\left[\begin{array}{cc}
\left\|C_{1 L}\right\| & 0 \\
-\sqrt{2}\left\|C_{1 L}\right\|^{2} & -\sqrt{2}\left\|C_{1 R}\right\|^{2} \\
0 & \left\|C_{1 R}\right\|
\end{array}\right]
$$

Then $Q^{T} Q$ is symmetric 2×2 matrix, i.e.

$$
Q^{T} Q=\left[\begin{array}{cc}
\left\|C_{1 L}\right\|^{2}+2\left\|C_{1 L}\right\|^{4} & 2\left\|C_{1 L}\right\|^{2}\left\|C_{1 R}\right\|^{2} \\
2\left\|C_{1 R}\right\|^{2}\left\|C_{1 L}\right\|^{2} & \left\|C_{1 R}\right\|^{2}+2\left\|C_{1 R}\right\|^{4}
\end{array}\right]
$$

This matrix $Q^{T} Q$ has in fact distinct positive eigenvalues by the following lemma.
Lemma 1. $Q^{T} Q$ has distinct positive eigenvalues.
Proof. The characteristic polynomial $f(\lambda)$ of $Q^{T} Q$ is

$$
\begin{aligned}
f(\lambda) & =\operatorname{det}\left(Q^{T} Q-\lambda I\right) \\
& =\lambda^{2}-\left(1-4\left\|C_{1 L}\right\|^{2}\left\|C_{1 R}\right\|^{2}\right) \lambda+2\left\|C_{1 L}\right\|^{2}\left\|C_{1 R}\right\|^{2}
\end{aligned}
$$

Putting $a=\left\|C_{1 L}\right\|^{2}$,

$$
\begin{aligned}
D(a) & =1-16\left\|C_{1 L}\right\|^{2}\left\|C_{1 R}\right\|^{2}+16\left\|C_{1 L}\right\|^{4}\left\|C_{1 R}\right\|^{4} \\
& =1-16 a\left(\frac{1}{2}-a\right)+16 a^{2}\left(\frac{1}{2}-a\right)^{2} \\
& =16 a^{4}-16 a^{3}+20 a^{2}-8 a+1 \\
D^{\prime}(a) & =64 a^{3}-48 a^{2}+40 a-8=8(4 a-1)\left(2 a^{2}-a+1\right)
\end{aligned}
$$

Since $D\left(\frac{1}{4}\right)=\frac{1}{16}>0$ and $2 a^{2}-a+1>0, D$ is positive for all a. Hence $f(\lambda)=0$ has distinct roots. And since $\left\|C_{1 L}\right\|^{2}$ and $\left\|C_{1 R}\right\|^{2}$ are less than $\frac{1}{2}, 1-4\left\|C_{1 L}\right\|^{2}\left\|C_{1 R}\right\|^{2}>0$. Hence $Q^{T} Q$ has distinct positive eigenvalues.

By the lemma, let λ and $\mu(\lambda \neq \mu)$ be positive eigenvalues of $Q^{T} Q$, and v_{1}, v_{2} the corresponding unit eigenvectors. Then $Q^{T} Q$ can be diagonalized as

$$
P^{T} Q^{T} Q P=D=\left[\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right]
$$

where $P=\left[v_{1}, v_{2}\right]$ is an orthogonal matrix. Let

$$
X_{i}=\left[\left\|C_{1 L}\right\| x_{i}, y_{i},\left\|C_{1 R}\right\| z_{i}\right]^{T}, i=1,2
$$

Then $X_{i}, i=1,2$ are orthonormal if and only if $D^{\frac{1}{2}} P^{T}\left[x_{i}, z_{i}\right]^{T} \equiv\left[\bar{x}_{i}, \bar{z}_{i}\right]^{T}$ are orthonormal, which follows from the fact that

$$
\begin{aligned}
\left\langle X_{i}, X_{j}\right\rangle & =\left\langle Q\left[x_{i}, z_{i}\right]^{T}, Q\left[x_{j}, z_{j}\right]^{T}\right\rangle \\
& =\left\langle\left[x_{i}, z_{i}\right]^{T}, Q^{T} Q\left[x_{j}, z_{j}\right]^{T}\right\rangle \\
& =\left\langle\left[x_{i}, z_{i}\right]^{T}, P D P^{T}\left[x_{j}, z_{j}\right]^{T}\right\rangle \\
& =\left\langle P^{T}\left[x_{i}, z_{i}\right]^{T}, D P^{T}\left[x_{j}, z_{j}\right]^{T}\right\rangle \\
& =\left\langle D^{\frac{1}{2}} P^{T}\left[x_{i}, z_{i}\right]^{T}, D^{\frac{1}{2}} P^{T}\left[x_{j}, z_{j}\right]^{T}\right\rangle \\
& =\left\langle\left[\bar{x}_{i}, \bar{z}_{i}\right]^{T},\left[\bar{x}_{j}, \bar{z}_{j}\right]^{T}\right\rangle, i=1,2
\end{aligned}
$$

Let $\left[\begin{array}{cc}\bar{x}_{1} & \bar{x}_{2} \\ \bar{z}_{1} & \overline{z_{2}}\end{array}\right]$ be the rotation matrix $R=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, then $\left[X_{1}, X_{2}\right]=$ $Q P D^{-\frac{1}{2}} R$. From these arguments we obtain the following result.
Theorem 1. Given orthonormal scaling vector $\Phi=\left[\phi_{1}, \phi_{2}\right]^{T}$ of the DGHM type satisfying refinement equation

$$
\Phi(x)=\sqrt{2} \sum_{k=-2}^{1} C(k) \Phi(2 x-k), C(k)=\left[\begin{array}{cc}
c_{11}(k) & c_{12}(k) \\
c_{21}(k) & c_{22}(k)
\end{array}\right]
$$

the orthonormal wavelet vector $\Psi=\left[\psi_{1}, \psi_{2}\right]^{T}$ can be constructed as following steps:
(1) $C_{1 L}=\left[c_{12}(-2) c_{11}(-1) c_{12}(-1)\right], C_{1 R}=\left[c_{12}(0) c_{11}(1) c_{12}(1)\right]$
(2) Define a 3×2 matrix Q by

$$
Q=\left[\begin{array}{cc}
\left\|C_{1 L}\right\| & 0 \\
-\sqrt{2}\left\|C_{1 L}\right\|^{2} & -\sqrt{2}\left\|C_{1 R}\right\|^{2} \\
0 & \left\|C_{1 R}\right\|
\end{array}\right]
$$

(3) Diagonalize $Q^{T} Q$:

$$
P^{T} Q^{T} Q P=D
$$

where P is an orthogonal matrix and D is diagonal.

$$
\text { (4) }\left[\begin{array}{cc}
\alpha_{1 L} & \alpha_{2 L} \\
d_{11}(0) & d_{21}(0) \\
\alpha_{1 R} & \alpha_{2 R}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\left\|c_{1 L}\right\|} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{\left\|c_{1 R}\right\|}
\end{array}\right] Q P D^{-\frac{1}{2}}\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \text {. }
$$

(5) $\Psi(x)=\sqrt{2} \sum_{k=-2}^{1} D(k) \Phi(2 x-k)$ is a wavelet vector with multiwavelet coefficients $D(k)$:

$$
D(-2)=\left[\begin{array}{cc}
0 & \alpha_{1 L} \cdot c_{12}(-2) \\
0 & \alpha_{2 L} \cdot c_{12}(-2)
\end{array}\right], D(-1)=\left[\begin{array}{ll}
\alpha_{1 L} c_{11}(-1) & \alpha_{1 L} c_{12}(-1) \\
\alpha_{2 L} c_{11}(-1) & \alpha_{2 L} c_{12}(-1)
\end{array}\right]
$$

$$
D(0)=\left[\begin{array}{ll}
d_{11}(0) & \alpha_{1 R} \cdot c_{12}(0) \\
d_{21}(0) & \alpha_{2 R} \cdot c_{12}(0)
\end{array}\right], D(1)=\left[\begin{array}{ll}
\alpha_{1 R} c_{11}(1) & \alpha_{1 R} c_{12}(1) \\
\alpha_{2 R} c_{11}(1) & \alpha_{2 R} c_{12}(1)
\end{array}\right] .
$$

Example 1. The DGHM multiscaling coefficients $C(k)$ are given in [6] as

$$
\begin{aligned}
C(-2) & =\frac{1}{20}\left[\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right], C(-1)=\frac{1}{20}\left[\begin{array}{cc}
-3 \sqrt{2} & 9 \\
0 & 0
\end{array}\right] \\
C(0) & =\frac{1}{20}\left[\begin{array}{cc}
10 \sqrt{2} & 9 \\
0 & 6 \sqrt{2}
\end{array}\right], C(1)=\frac{1}{20}\left[\begin{array}{cc}
-3 \sqrt{2} & -1 \\
16 & 6 \sqrt{2}
\end{array}\right] .
\end{aligned}
$$

We follow the steps of above theorem to get wavelet coefficients $D(k)$.
(1) $C_{1 L}=\left[\begin{array}{llll}-\frac{1}{20} & -\frac{3 \sqrt{2}}{20} & \frac{9}{20}\end{array}\right], C_{1 R}=\left[\begin{array}{lll}\frac{9}{20} & -\frac{3 \sqrt{2}}{20} & -\frac{1}{20}\end{array}\right]$
(2) $Q=\left[\begin{array}{cc}\frac{1}{2} & 0 \\ -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ 0 & \frac{1}{2}\end{array}\right]$
(3) $Q^{T} Q=\left[\begin{array}{cc}\frac{3}{8} & \frac{1}{8} \\ \frac{1}{8} & \frac{3}{8}\end{array}\right]$, and it has eigenvalues $\frac{1}{2}, \frac{1}{4}$ with the corresponding unit eigenvectors $\left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]^{T},\left[\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right]^{T}$, respectively. Thus $Q^{T} Q$ can be diagonalized as

$$
Q^{T} Q=P D P^{T}, \text { where } P=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right], D=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{4}
\end{array}\right] .
$$

$$
\begin{align*}
& {\left[\begin{array}{cc}
\alpha_{1 L} & \alpha_{2 L} \\
d_{11}(0) & d_{21}(0) \\
\alpha_{1 R} & \alpha_{2 R}
\end{array}\right] } \tag{4}\\
= & {\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
-\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\
0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] . } \\
= & {\left[\begin{array}{cc}
1 & \sqrt{2} \\
-\frac{1}{\sqrt{2}} & 0 \\
1 & -\sqrt{2}
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta+\sqrt{2} \sin \theta & -\sin \theta+\sqrt{2} \cos \theta \\
-\frac{1}{\sqrt{2}} \cos \theta & \frac{1}{\sqrt{2}} \sin \theta \\
\cos \theta-\sqrt{2} \sin \theta & -\sin \theta-\sqrt{2} \cos \theta
\end{array}\right] . }
\end{align*}
$$

Hence the multiwavelet coefficients of DGHM type are

$$
\begin{aligned}
D(-2) & =\left[\begin{array}{cc}
0 & (\cos \theta+\sqrt{2} \sin \theta) \cdot c_{12}(-2) \\
0 & (-\sin \theta+\sqrt{2} \cos \theta) \cdot c_{12}(-2)
\end{array}\right], \\
D(-1) & =\left[\begin{array}{cc}
(\cos \theta+\sqrt{2} \sin \theta) c_{11}(-1) & (\cos \theta+\sqrt{2} \sin \theta) c_{12}(-1) \\
(-\sin \theta+\sqrt{2} \cos \theta) c_{11}(-1) & (-\sin \theta+\sqrt{2} \cos \theta) c_{12}(-1)
\end{array}\right], \\
D(0) & =\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} \cos \theta & (\cos \theta-\sqrt{2} \sin \theta) \cdot c_{12}(0) \\
\frac{1}{\sqrt{2}} \sin \theta & (-\sin \theta-\sqrt{2} \cos \theta) \cdot c_{12}(0)
\end{array}\right],
\end{aligned}
$$

$$
D(1)=\left[\begin{array}{cc}
(\cos \theta-\sqrt{2} \sin \theta) c_{11}(1) & (\cos \theta-\sqrt{2} \sin \theta) c_{12}(1) \\
(-\sin \theta-\sqrt{2} \cos \theta) c_{11}(1) & (-\sin \theta-\sqrt{2} \cos \theta) c_{12}(1)
\end{array}\right] .
$$

In particular, if we take $\theta=0$ then we obtain DGHM multiwavelets [7] as

$$
\begin{aligned}
D(-2) & =\frac{1}{20}\left[\begin{array}{cc}
0 & -1 \\
0 & -\sqrt{2}
\end{array}\right], D(-1)=\frac{1}{20}\left[\begin{array}{ll}
-3 \sqrt{2} & 9 \\
-6 & 9 \sqrt{2}
\end{array}\right] \\
D(0) & =\frac{1}{20}\left[\begin{array}{ll}
-10 \sqrt{2} & 9 \\
0 & -9 \sqrt{2}
\end{array}\right], D(1)=\left[\begin{array}{ll}
-3 \sqrt{2} & -1 \\
6 & \sqrt{2}
\end{array}\right]
\end{aligned}
$$

If ϕ_{1} is symmetric, then $\left\|c_{1 L}\right\|=\left\|c_{1 R}\right\|=\frac{1}{2}$. From the step (4) in example 2.1, we know that the multiwavelet functions are symmetric or antisymmetric if and only if $\theta=\frac{\pi}{2} n, n \in \mathbf{Z}$. Thus we obtain the following corollary.
Corollary 1. If $\Phi=\left[\phi_{1}, \phi_{2}\right]^{T}$ is a scaling vector of DGHM type with symmetric ϕ_{1}, then there exists a unique symmetric or antisymmetric wavelet vector $\Psi=$ $\left[\psi_{1}, \psi_{2}\right]^{T}$ up to sign.

References

1. I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1998), 909-996.
2. I. Daubechies, Ten lectures on wavelets, SIAM, Philadelphia, 1992.
3. G.C. Donovan, J.S. Geronimo and D.P. Hardin, Intertwining multiresolution analyses and construction of piecewise polynomial wavelets, SIAM J. Math. Analysis 27 (1996), 17911815.
4. G.C. Donovan, J.S. Geronimo and D.P. Hardin, Orthogonal multiwavelet constructions : 101 things to do with a hat function, Advances in wavelets, Springer (1999), 187-197.
5. G.C. Donovan, J.S. Geronimo and D.P. Hardin, Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets, SIAM J. Math. Analysis 30 (1999), 10291056.
6. G.C. Donovan, J.S. Geronimo, D.P. Hardin and P.R. Massopust, Construction of orthogonal wavelets using fractal interpolation functions, SIAM J. Math. Analysis 27 (1996), 11581192.
7. J.S. Geronimo, D.P. Hardin and P.R. Massopust, Fractal functions and wavelet expansions based on several scaling functions, J. Approx. Theory 78 (1994), 373-401.
8. T.N.T. Goodman and S.L. Lee, Wavelets of multiplicity r, Trans. Amer. Math. Soc. 342 (1994), 307-324.

Seok Yoon Hwang is a professor of Mathematics at Daegu University. Department of Mathematics, Daegu University, Kyungbuk 712-714, South Korea. e-mail: syhwang@daegu.ac.kr

[^0]: Received July 23, 2010. Revised September 23, 2010. Accepted October 11, 2010
 ${ }^{\dagger}$ This research was supported by Daegu University Research Grant, 2009.
 (C) 2011 Korean SIGCAM and KSCAM.

