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A NOTE ON THE PARAMETRIZATION OF

MULTIWAVELETS OF DGHM TYPE†

SEOK YOON HWANG

Abstract. Multiwavelet coefficients can be constructed from the multi-
scaling coefficients by using the factorization for paraunitary matrices. In
this paper we present a procedure for parametrizing all possible multi-
wavelet coefficients corresponding to the multiscaling coefficients of DGHM
type.
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1. Introduction

In [2,1], Daubechies gave perfect formulas for the constructions of wavelets.
However, it seems that there is not such a good formula of similar structure for
multiwavelets. Donovan et al.[3,6] described a method for constructing orthog-
onal multiwavelets associated with orthogonal scaling functions of some type.
And also Donovan et al. [4] presented an alternate construction of multiwavelet
coefficients of DGHM type. This paper gives a procedure for parametrizing all
possible multiwavelet coefficients associated with two scaling functions of the
same type as [6,7].

2. Parametrization of Multiwavelets of DGHM Type

Assume that Φ = [φ1, φ2]
T is an orthonormal scaling vector of DGHM type,

that is
(1) Φ is continuous and supported on [−1, 1]
(2) φ1 is not supported on either [−1, 0] or [0, 1], and φ1(0) 6= 0
(3) φ2 is supported on [0, 1]
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Then the scaling vector Φ satisfies the following refinement equation:

Φ(x) =
√
2

1∑

k=−2

C(k)Φ(2x− k).

where the 2× 2 matrices C(k) =

[
c11(k) c12(k)
c21(k) c22(k)

]
are the scaling coefficients

for Φ. Since φ2 is supported on [0, 1], we have

c21(k), c22(k) = 0, for k = −2,−1.

By the fact that φ1 is continuous and nonzero at 0, we have c11(0) =
1√
2
. Let

C1L = [c12(−2) c11(−1) c12(−1)],

C1R = [c12(0) c11(1) c12(1)], and

C2 = [c22(0) c21(1) c22(1)].

Then the orthonormality of Φ implies
(1) C1L, C1R and C2 are orthogonal.
(2) ‖ φ1 ‖2=‖ C1L ‖2 + 1

2+ ‖ C1R ‖2= 1
Now we construct the multiwavelet coefficients. If we assume that Ψ =

[ψ1, ψ2]
T is a wavelet vector supported on [−1, 1], then it must be of the form

Ψ(x) =
√
2

1∑

k=−2

D(k)Φ(2x− k),

where the 2× 2 matrices D(k) =

[
d11(k) d12(k)
d21(k) d22(k)

]
are the multiwavelet coef-

ficients for Ψ. Let

DiL = [di2(−2) di1(−1) di2(−1)],

DiR = [di2(0) di1(1) di2(1)], i = 1, 2.

And let

ΦL =
√
2[φ2(2 ·+2) φ1(2 ·+1) φ2(2 ·+1)]T ,

ΦR =
√
2[φ2(2·) φ1(2 · −1) φ2(2 · −1)]T .

Then

ψi = DiLΦL + di1(0)
√
2φ1(2·) +DiRΦR.

Since ψi is orthogonal to φ2 and φ1(· − 1), DiR is orthogonal to C1L and C2.
Hence DiR must be a multiple of C1R. Similarly, DiL must be a multiple of C1L.
So Ψ must be of the form

ψi = αiLC1LΦL + di1(0)φ1(2·) + αiRC1RΦR, for some αiL, αiR ∈ R.

Since C1L is orthogonal to C1R, ψi is orthogonal to the nonzero shifts of a ψj

for i 6= j. If we note the remaining orthogonality conditions

〈ψi, φ1〉 = 0, and 〈ψi, ψj〉 = δij , i = 1, 2,
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then we can complete the construction of orthonormal wavelets ψi, by finding
the solutions αiL, diL(0), αiR of the following equations:

(1) ‖ C1L ‖2 + ‖ C1R ‖2= 1
2

(2) αiL ‖ C1L ‖2 + 1√
2
di1(0) + αiR ‖ C1R ‖2= 0

(3) αiLαjL ‖ C1L ‖2 +di1(0)dj1(0) + αiRαjR ‖ C1R ‖2= δij .
It can be modified to the problem to find two solutions (xi, yi, zi), i = 1, 2, of
equations

(1) ‖ C1L ‖2 + ‖ C1R ‖2= 1
2

(2) ‖ C1L ‖2 x+ 1√
2
y+ ‖ C1R ‖2 z = 0

(3) ‖ C1L ‖2 x2 + y2+ ‖ C1R ‖2 z2 = 1
such that (‖ C1L ‖2 xi, yi, ‖ C1R ‖2 zi), i = 1, 2 are orthogonal.
Let Q be a 3× 2 matrix defined by




‖ C1L ‖ 0

−√
2 ‖ C1L ‖2 −√

2 ‖ C1R ‖2
0 ‖ C1R ‖




Then QTQ is symmetric 2× 2 matrix, i.e.

QTQ =

[ ‖ C1L ‖2 +2 ‖ C1L ‖4 2 ‖ C1L ‖2‖ C1R ‖2
2 ‖ C1R ‖2‖ C1L ‖2 ‖ C1R ‖2 +2 ‖ C1R ‖4

]

This matrixQTQ has in fact distinct positive eigenvalues by the following lemma.

Lemma 1. QTQ has distinct positive eigenvalues.

Proof. The characteristic polynomial f(λ) of QTQ is

f(λ) = det(QTQ− λI)

= λ2 − (1− 4 ‖ C1L ‖2‖ C1R ‖2)λ+ 2 ‖ C1L ‖2‖ C1R ‖2

Putting a =‖ C1L ‖2,
D(a) = 1− 16 ‖ C1L ‖2‖ C1R ‖2 +16 ‖ C1L ‖4‖ C1R ‖4

= 1− 16a(
1

2
− a) + 16a2(

1

2
− a)2

= 16a4 − 16a3 + 20a2 − 8a+ 1

D′(a) = 64a3 − 48a2 + 40a− 8 = 8(4a− 1)(2a2 − a+ 1)

Since D( 14 ) = 1
16 > 0 and 2a2 − a + 1 > 0, D is positive for all a. Hence

f(λ) = 0 has distinct roots. And since ‖ C1L ‖2 and ‖ C1R ‖2 are less than
1
2 , 1− 4 ‖ C1L ‖2‖ C1R ‖2> 0. Hence QTQ has distinct positive eigenvalues. ¤

By the lemma, let λ and µ(λ 6= µ) be positive eigenvalues of QTQ, and v1, v2
the corresponding unit eigenvectors. Then QTQ can be diagonalized as

PTQTQP = D =

[
λ 0
0 µ

]
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where P = [v1, v2] is an orthogonal matrix. Let

Xi = [||C1L||xi, yi, ||C1R||zi]T , i = 1, 2.

Then Xi, i = 1, 2 are orthonormal if and only if D
1
2PT [xi, zi]

T ≡ [x̄i, z̄i]
T are

orthonormal, which follows from the fact that

〈Xi, Xj〉 = 〈Q[xi, zi]
T , Q[xj , zj ]

T 〉
= 〈[xi, zi]

T , QTQ[xj , zj ]
T 〉

= 〈[xi, zi]
T , PDPT [xj , zj ]

T 〉
= 〈PT [xi, zi]

T , DPT [xj , zj ]
T 〉

= 〈D 1
2PT [xi, zi]

T , D
1
2PT [xj , zj ]

T 〉
= 〈[x̄i, z̄i]

T , [x̄j , z̄j ]
T 〉, i = 1, 2

Let

[
x̄1 x̄2

z̄1 z̄2

]
be the rotation matrix R =

[
cosθ −sinθ
sinθ cosθ

]
, then [X1, X2] =

QPD− 1
2R. From these arguments we obtain the following result.

Theorem 1. Given orthonormal scaling vector Φ = [φ1, φ2]
T of the DGHM type

satisfying refinement equation

Φ(x) =
√
2

1∑

k=−2

C(k)Φ(2x− k), C(k) =

[
c11(k) c12(k)
c21(k) c22(k)

]
,

the orthonormal wavelet vector Ψ = [ψ1, ψ2]
T can be constructed as following

steps:
(1) C1L = [c12(−2) c11(−1) c12(−1)], C1R = [c12(0) c11(1) c12(1)]
(2) Define a 3× 2 matrix Q by

Q =




‖ C1L ‖ 0

−√
2 ‖ C1L ‖2 −√

2 ‖ C1R ‖2
0 ‖ C1R ‖




(3) Diagonalize QTQ :

PTQTQP = D,

where P is an orthogonal matrix and D is diagonal.

(4)




α1L α2L

d11(0) d21(0)
α1R α2R


 =




1
‖c1L‖ 0 0

0 1 0
0 0 1

‖c1R‖


QPD− 1

2

[
cosθ −sinθ
sinθ cosθ

]
.

(5) Ψ(x) =
√
2
∑1

k=−2 D(k)Φ(2x − k) is a wavelet vector with multiwavelet
coefficients D(k) :

D(−2) =

[
0 α1L · c12(−2)
0 α2L · c12(−2)

]
, D(−1) =

[
α1Lc11(−1) α1Lc12(−1)
α2Lc11(−1) α2Lc12(−1)

]
,
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D(0) =

[
d11(0) α1R · c12(0)
d21(0) α2R · c12(0)

]
, D(1) =

[
α1Rc11(1) α1Rc12(1)
α2Rc11(1) α2Rc12(1)

]
.

Example 1. The DGHM multiscaling coefficients C(k) are given in [6] as

C(−2) =
1

20

[
0 −1
0 0

]
, C(−1) =

1

20

[ −3
√
2 9

0 0

]
,

C(0) =
1

20

[
10
√
2 9

0 6
√
2

]
, C(1) =

1

20

[ −3
√
2 −1

16 6
√
2

]
.

We follow the steps of above theorem to get wavelet coefficients D(k).

(1) C1L =
[
− 1

20 − 3
√
2

20
9
20

]
, C1R =

[
9
20 − 3

√
2

20 − 1
20

]

(2) Q =




1
2 0

−
√
2
4 −

√
2
4

0 1
2




(3) QTQ =

[
3
8

1
8

1
8

3
8

]
, and it has eigenvalues 1

2 ,
1
4 with the corresponding

unit eigenvectors
[

1√
2
, 1√

2

]T
,
[

1√
2
,− 1√

2

]T
,respectively. Thus QTQ can be diag-

onalized as

QTQ = PDPT ,where P =

[
1√
2

1√
2

1√
2

− 1√
2

]
, D =

[
1
2 0
0 1

4

]
.

(4)



α1L α2L

d11(0) d21(0)
α1R α2R




=




2 0 0
0 1 0
0 0 2






1
2 0

−
√
2
4 −

√
2
4

0 1
2



[

1√
2

1√
2

1√
2

− 1√
2

] [ √
2 0

0
√
2

] [
cosθ −sinθ
sinθ cosθ

]

=




1
√
2

− 1√
2

0

1 −√
2



[

cosθ −sinθ
sinθ cosθ

]
=




cos θ +
√
2 sin θ − sin θ +

√
2 cos θ

− 1√
2
cos θ 1√

2
sin θ

cos θ −√
2 sin θ − sin θ −√

2 cos θ


 .

Hence the multiwavelet coefficients of DGHM type are

D(−2) =

[
0 (cos θ +

√
2 sin θ) · c12(−2)

0 (− sin θ +
√
2 cos θ) · c12(−2)

]
,

D(−1) =

[
(cos θ +

√
2 sin θ)c11(−1) (cos θ +

√
2 sin θ)c12(−1)

(− sin θ +
√
2 cos θ)c11(−1) (− sin θ +

√
2 cos θ)c12(−1)

]
,

D(0) =

[
− 1√

2
cos θ (cos θ −√

2 sin θ) · c12(0)
1√
2
sin θ (− sin θ −√

2 cos θ) · c12(0)

]
,
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D(1) =

[
(cos θ −√

2 sin θ)c11(1) (cos θ −√
2 sin θ)c12(1)

(− sin θ −√
2 cos θ)c11(1) (− sin θ −√

2 cos θ)c12(1)

]
.

In particular, if we take θ = 0 then we obtain DGHM multiwavelets [7] as

D(−2) =
1

20

[
0 −1

0 −√
2

]
, D(−1) =

1

20

[ −3
√
2 9

−6 9
√
2

]
,

D(0) =
1

20

[ −10
√
2 9

0 −9
√
2

]
, D(1) =

[ −3
√
2 −1

6
√
2

]
.

If φ1 is symmetric, then ‖ c1L ‖=‖ c1R ‖= 1
2 . From the step (4) in example

2.1, we know that the multiwavelet functions are symmetric or antisymmetric if
and only if θ = π

2n, n ∈ Z. Thus we obtain the following corollary.

Corollary 1. If Φ = [φ1, φ2]
T is a scaling vector of DGHM type with symmetric

φ1 , then there exists a unique symmetric or antisymmetric wavelet vector Ψ =
[ψ1, ψ2]

T up to sign.
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