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FIXED AND PERIODIC POINT THEOREMS IN

QUASI-METRIC SPACES

SEONG-HOON CHO∗ AND JEE-WON LEE†

Abstract. In this paper, we introduce the concept of generalized weak
q-contractivity for multivalued maps defined on quasi-metric spaces. A
new fixed point theorem for these maps is established. The convergene of
iterate schem of the form xn+1 ∈ Fxn is investigated. And a new periodic
point theorem for weakly q-contractive self maps of quasi-metric spaces is
proved.
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1. Introduction and preliminaries

The authors [1] introduced the notion of weakly contractive mappings for
single valued maps on Hilbert spaces. This concept is one of generalizations of
contraction maps. They proved the existence of fixed points for weakly contrac-
tive maps in Hilbert spaces. The author [12] extended some of results in [1] to
arbitrary Banach spaces. In fact, weakly contractive maps are closely related to
maps of Boyd and Wong type ones [6] and Reich type ones [10].

In [3], the author introduced the notion of weak contractivity for multivalued
maps and proved some fixed point theorems for weakly contractive multivalued
maps with inwardness or weakly inwardness conditions.

In [4], the authors proved the existence of coincidence points and common
fixed points for two single valued maps satisfying generalized weakly contractive
conditions.

Recently, in [2] the authors gave the notions of q-contractivity for multival-
ued and single valued maps in quasi-metric spaces, and gave some fixed point
theorems in quasi-metric spaces.
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In this paper we introduce the notion of generalized weakly q-contractive
multivalued maps defined on a quasi-metric space, and we give a new fixed point
theorems for these maps. We also give a new fixed point theorems for weakly
q-contractive multivalued maps, which is a extension of theorem 3.1 in [3] and
theorem 1 in [12] to quasi-metric spaces. We obtain a generalization of theorem
6.1 in [2]. With a Q-function, we obtain quasi-metric space versions of Nadler’s
and Banach’s fixed point theorem. Also, we investigate the convergene of iterate
schem of the form xn+1 ∈ Fxn with error estimates, where F is a weakly q-
contractive multivalued map. And we prove a new periodic point theorem for
weakly q-contractive self maps of quasi-metric spaces.

For the convenience, recall the following well known definition of a quasi-
metric space.

Let X be a nonempty set. A function d : X ×X → [0,∞) is called a quasi-
metric on X if the following are satisfied:

(d1) d(x, y) ≥ 0 for all x, y ∈ X;
(d2) d(x, y) = 0 if and only if x = y;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

A nonempty set X together with a quasi-metric d is called a quasi-metric
space and it is denoted by (X, d). Note that the notion of a quasi-metric space
is a generalization of the notion of a metric space.

Throughout the paper, unless otherwise specified, X is assumed to be a quasi-
metric space with a quasi-metric d.

We know that each quasi-metric d on X generartes a T0 topology on X. For
a quasi-metric d on X, the conjugate quasi-metric d−1 on X of d is defined by
d−1(x, y) = d(y, x). We denote by du the metric d ∨ d−1, that is, du(x, y) =
max{d(x, y), d(y, x)}, for all x, y ∈ X.

A sequence {xn} of points of X is called left K-Cauchy [11] if for each ε > 0,
there exists n0 ∈ N such that d(xn, xm) < ε for all m,n ∈ N. A sequence {xn} of
points of X converges to some point x ∈ X if for each ε > 0, there exists n0 ∈ N
such that d(x, xn) < ε for all n ≥ n0.

X is called left K-complete [11, 13] if every left K-Cauchy sequence in X is
convergent with respect to d. X is called Smyth-complete [8, 14] if every left
K-Cauchy sequence in X is convergent with respect to du.

Remark 1.1. Every Smyth-complete quasi-metric space is left K-complete. In
general, it is known that the converse is not true.

A function q : X ×X → [0,∞) is called Q-function [2] on X if the following
are satisfied:
(Q1) for all x, y, z ∈ X, q(x, z) ≤ q(x, y) + q(y, z);
(Q2) if x ∈ X and {yn} is a sequence in X such that limn→∞ d(y, yn) = 0 and
q(x, yn) ≤ M for some M > 0, then q(x, y) ≤ M ;
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(Q3) for any ε > 0, there exists δ > 0 such that q(x, y) ≤ δ and q(x, z) ≤ δ imply
d(y, z) ≤ ε.

We denote by K(X) the family of nonempty compact subsets of (X, du) and
by C(X) the family of nonempty closed subsets of (X, d). Let q : X×X → [0,∞)
be a Q-function on X.

We define Hq : C(X)× C(X) → [0,∞) by

Hq(A,B) = max{supb∈Bq(A, b), supa∈Aq(a,B)}, A,B ∈ C(X),

where q(A, b) = inf{q(a, b) : a ∈ A} and q(a,B) = inf{q(a, b) : b ∈ B}.
Let Dq(A,B) = supa∈Aq(a,B). Then Dq(A,B) ≤ Hq(A,B).

Lemma 1.1. [2] Let q : X ×X → [0,∞) be a Q-function on X, and let {xn}
and {yn} be sequences in X and x, y, z ∈ X. If {αn} and {βn} are sequences in
[0,∞) such that αn → 0 and βn → 0, then the following are satisfied:
(i) If q(xn, y) ≤ αn and q(xn, z) ≤ βn for all n ∈ N, then y = z. In particular,
if q(x, y) = 0 and q(x, z) = 0, then y = z;
(ii) If q(xn, y) ≤ αn and q(xn, yn) ≤ βn for all n ∈ N, then limn→∞ d(y, yn) = 0;
(iii) If q(xn, xm) ≤ αn for all n,m ∈ N with m > n, then {xn} is a left K-Cauchy
sequence;
(iv) If q(y, xn) ≤ αn for all n ∈ N, then {xn} is a left K-Cauchy sequence.

From now on, let ϕ : [0,∞) → [0,∞) be a nondecreasing function such that
(ϕ1) ϕ(0) = 0;
(ϕ2) 0 < ϕ(t) < t, for each t > 0;
(ϕ3) for any sequence {tn} of (0,∞),

∑∞
n=1 ϕ(tn) < ∞ implies

∑∞
n=1 tn < ∞.

2. Fixed point theorems

A map f : X → X is called weakly q-contractive if there exists a Q-function
q on X such that for all x, y ∈ X

q(fx, fy) ≤ q(x, y)− ϕ(q(x, y)).

A multivalued map F : X → 2X is called weakly q-contractive if there exists
a Q-function q on X such that for all x, y ∈ X

Hq(Fx, Fy) ≤ q(x, y)− ϕ(q(x, y)).

A multivalued map F : X → 2X is called generalized weakly q-contractive if
there exists a Q-function q on X such that, for each x, y ∈ X and u ∈ Fx, there
exists v ∈ Fy such that

q(u, v) ≤ q(x, y)− ϕ(q(x, y)). (1)

In this section, we give a new fixed point theorem for a generalized weakly
q-contractive multivalued map in quasi-metric space with a Q-function. And
then, we obtain generalizations of results in [2].
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Theorem 2.1. Let (X, d) be a left K-complete quasi-metric space. If F : X →
C(X) is a generalized weakly q-contractive multivalued map, then F has a fixed
point in X and q(p, p) = 0 for p ∈ Fix(F ), where Fix(F ) denotes the set of all
fixed points of F .

Proof. Let x0 ∈ X and x1 ∈ Fx0. By (1), there exists x2 ∈ Fx1 such that

q(x1, x2) ≤ q(x0, x1)− ϕ(q(x0, x1)).

Again, by (1) there exists x3 ∈ Fx2 such that

q(x2, x3) ≤ q(x1, x2)− ϕ(q(x1, x2)).

Continuing in this way, we have a sequence {xn} of points of X such that for
all n = 0, 1, 2 · · ·

xn+1 ∈ Fxn and q(xn+1, xn+2) ≤ q(xn, xn+1)− ϕ(q(xn, xn+1)).

Hence the sequence {q(xn, xn+1)} is nonincreasing. Thus there exists l ≥ 0
such that limn→∞ q(xn, xn+1) = l.

We now show that l = 0.
Suppose l > 0. Then we have

q(xn, xn+1) ≤ q(xn−1, xn)− ϕ(q(xn−1, xn)) ≤ q(xn−1, xn)− ϕ(l),

and so

q(xn+N , xn+N+1) ≤ q(xn−1, xn)−Nϕ(l),

which is a contradiction for N large enough. Thus we have

lim
n→∞

q(xn, xn+1) = 0. (2)

For m ∈ N with m ≥ 3, we have

q(xm−1, xm)

≤ q(xm−2, xm−1)− ϕ(q(xm−2, xm−1)) · · ·
≤ q(x1, x2)− ϕ(q(x1, x2))− · · · − ϕ(q(xm−2, xm−1)).

Hence we have

m−2∑

k=1

ϕ(q(xk, xk+1)) ≤ q(x1, x2)− q(xm−1, xm).

Letting m → ∞ in above inequality, we have

∞∑
n=1

ϕ(q(xn, xn+1)) ≤ q(x1, x2) < ∞

which implies
∞∑

n=1

q(xn, xn+1) < ∞ by (ϕ3).
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Let αn =
∑∞

k=n q(xk, xk+1). Then for all m > n

q(xn, xm) ≤
m−1∑

k=n

q(xk, xk+1). (3)

By Lemma 1.1 (iii), {xn} is a left K-Cauchy sequence in (X, d). Since (X, d)
is left K-complete, there exists p ∈ X such that limm→∞ d(p, xm) = 0. By (Q2)
and (3), we have

q(xn, p) ≤ αn. (4)

From (1) there exists sn ∈ Fp such that

q(xn, sn) ≤ q(xn−1, p)− ϕ(q(xn−1, p)) ≤ αn−1.

By Lemma 1.1 (ii), limn→∞ d(p, sn) = 0. Hence p ∈ Fp because Fp ∈ C(X).
Next we show that q(p, p) = 0.
For p ∈ Fp, by (1) there exists y1 ∈ Fp such that q(p, y1) ≤ q(p, p)−ϕ(q(p, p)).

For p ∈ Fp, there exists y2 ∈ Fy1 such that q(p, y2) ≤ q(p, y1)− ϕ(q(p, y1)).
Continuing in this process, we have a sequence {yn} of points of X such that

yn ∈ Fyn−1 and q(p, yn+1) ≤ q(p, yn)− ϕ(q(p, yn)) for all n ∈ N.
Thus we have

q(p, yn+1)

≤ q(p, yn)− ϕ(q(p, yn))

≤ q(p, yn−1)− ϕ(q(p, yn−1))− ϕ(q(p, yn))

· · ·

≤ q(p, y1)−
n∑

k=1

ϕ(q(p, yk)). (5)

Since {q(p, yn)} is a nonincreasing sequence, as the proof of (2), we can show
limn→∞ q(p, yn) = 0.

Let βn = q(p, yn−1). Then q(p, yn) ≤ βn. By Lemma 1.1 (iv), {yn} is a left
K-Cauchy sequence in X. Let limn→∞ d(y, yn) = 0. By (Q2), q(p, y) ≤ βn and
so q(p, y) = 0.

From (4) and (Q1) we have q(xn, y) ≤ q(xn, p) + q(p, y) = q(xn, p) ≤ αn. By
Lemma 1.1 (i) with (4), we have y = p. Therefore, q(p, p) = 0. ¤

Example. LetX = { 1
2n : n = 1, 2 · · · }∪{0} and let d(x, y) =

{
y − x (y ≥ x)

2(x− y) (x > y)

for all x, y ∈ X. Let q(x, y) =| x − y | for all x, y ∈ X. Then (X, d) is a left
K-complete quasi-metric space and q is a Q-function on X. Let ϕ(t) = 1

2 t for
all t ≥ 0 and let F : X → C(X) be multivalued map defined as

Fx =

{
{ 1
2n+1 ,

1
2} (x = 1

2n , n = 1, 2, · · · ),
{0, 1

2} (x = 0).

We now show that F satisfies condition (1).
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If x = 0 and y = 0, then F satisfies condition (1).
If x = 0 and y = 1

2n (n = 1, 2, · · · ), then for u = 0 ∈ Fx there exists v =
1

2n+1 ∈ Fy such that

q(u, v) = q(0,
1

2n+1
) =

1

2n+1
≤ q(x, y)− ϕ(q(x, y)).

For u = 1
2 ∈ Fx there exists v = 1

2 ∈ Fy such that

q(u, v) = 0 ≤ q(x, y)− ϕ(q(x, y)).

Let x = 1
2n and y = 1

2m (m > n). Then for u = 1
2 ∈ Fx there exists

v = 1
2 ∈ Fy such that

q(u, v) = 0 ≤ q(x, y)− ϕ(q(x, y)).

For u = 1
2n+1 ∈ Fx there exists v = 1

2m+1 ∈ Fy such that

q(u, v) =
1

2n+1
− 1

2m+1
=

2m − 2n

2n+m+1
≤ q(x, y)− ϕ(q(x, y)).

Thus F is a generalized weakly q-contractive multivalued map and 0 ∈ F0.

Corollary 2.2. Let (X, d) be a left K-complete quasi-metric space. Suppose that
F : X → C(X) is a multivalued map satisfying

Dq(Fx, Fy) ≤ q(x, y)− ϕ(q(x, y)),

for each x, y ∈ X, where q is a Q-function on X.
Then F has a fixed point in X and q(p, p) = 0 for p ∈ Fix(F ).

Corollary 2.3. Let (X, d) be a left K-complete quasi-metric space. If F : X →
C(X) is a weakly q-contractive multivalued map, then F has a fixed point in X
and q(p, p) = 0 for p ∈ Fix(F ).

Corollary 2.4. Let (X, d) be a left K-complete quasi-metric space. If f : X →
X is a weakly q-contractive map, then f has a unique fixed point in X and
q(p, p) = 0 for p ∈ Fix(f).

Proof. From Corollary 2.3 there exists a point p ∈ X such that p = fp and
q(p, p) = 0. We show the uniqueness of the fixed point p of f .

Let z ∈ X be such that z = fz. If q(p, z) 6= 0, then q(p, z) = q(fp, fz) ≤
q(p, z) − ϕ(q(p, z)) < q(p, z) which is a contradiction. Hence q(p, z) = 0. By
Lemma 1.2 (i), p = z. ¤

Remark 2.1. In Theorem 2.1 and Corollary 2.2, if the map is single valued
then it has a unique fixed point.

Remark 2.2. Corollary 2.3 is an extension of theorem 3.1 in [3] to quasi-metric
space, and Corollary 2.4 is an extension of theorem 1 in [12] to quasi-metric
space.
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From now on, let φ : [0,∞) → [0,∞) be a nondecreasing function satisfying
the following conditions:
(φ1) φ(0) = 0 and 0 < φ(t) < t for each t > 0,
(φ2) t ≤ s implies φ(s)− φ(t) ≤ s− t,
(φ3) for any sequence {tn} of (0,∞),

∑∞
n=1(tn −φ(tn)) < ∞ implies

∑∞
n=1 tn <

∞.

Let ϕ(t) = t − φ(t). Then ϕ : [0,∞) → [0,∞) is a nondecreasing function
satisfying (ϕ1) ∼ (ϕ3). From Theorem 2.1, Corollary 2.2, Corollary 2.3 and
Corollary 2.4 we have the following results.

Corollary 2.5. Let (X, d) be a left K-complete quasi-metric space. Suppose that
F : X → C(X) is a multivalued map satisfying the following condition:

there exists a Q-function q on X such that, for each x, y ∈ X and u ∈ Fx,
there exists v ∈ Fy satisfying

q(u, v) ≤ φ(q(x, y)).

Then F has a fixed point in X and q(p, p) = 0 for p ∈ Fix(F ).

Corollary 2.6. Let (X, d) be a left K-complete quasi-metric space. Suppose that
F : X → C(X) is a multivalued map satisfying

Dq(Fx, Fy) ≤ φ(q(x, y)),

for each x, y ∈ X, where q is a Q-function on X.
Then F has a fixed point in X and q(p, p) = 0 for p ∈ Fix(F ).

Corollary 2.7. Let (X, d) be a left K-complete quasi-metric space. If F : X →
C(X) is a multivalued map satisfying

Hq(Fx, Fy) ≤ φ(q(x, y)),

for each x, y ∈ X, where q is a Q-function on X.
Then F has a fixed point in X and q(p, p) = 0 for p ∈ Fix(F ).

Corollary 2.8. Let (X, d) be a left K-complete quasi-metric space. If f : X → X
is a map satisfying

q(fx, fy) ≤ φ(q(x, y)), (6)

for each x, y ∈ X, where q is a Q-function on X, then f has a unique fixed point
in X and q(p, p) = 0 for p ∈ Fix(f).

Remark 2.3. If φ(t) = kt, for somr k ∈ [0, 1) in Corollary 2.5(Corollary 2.8),
then we have theorem 6.1(corollary 6.2) in [2].

In Corollary 2.7, if we have φ(t) = kt, for somr k ∈ [0, 1) then we obtain the
following result which is a quasi-metric space of Nadler’s fixed point theorem.
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Corollary 2.9. Let (X, d) be a left K-complete quasi-metric space. If F : X →
C(X) is a multivalued map satisfying

Hq(Fx, Fy) ≤ kq(x, y),

for each x, y ∈ X, where k ∈ [0, 1) and q is a Q-function on X, then F has a
fixed point in X and q(p, p) = 0 for p ∈ Fix(F ).

In Corollary 2.8, if we have φ(t) = kt, for somr k ∈ [0, 1) then we obtain the
following corollary which is a quasi-metric space version of Banach’s fixed point
theorem.

Corollary 2.10. Let (X, d) be a left K-complete quasi-metric space. If f : X →
X is a map satisfying

q(fx, fy) ≤ kq(x, y), (7)

for each x, y ∈ X, where k ∈ [0, 1) and q is a Q-function on X, then f has a
unique fixed point in X and q(p, p) = 0 for p ∈ Fix(F ).

Theorem 2.11. Let (X, d) be a left K-complete quasi-metric space and F : X →
C(X) be a weakly q-contractive multivalued map. If p ∈ Fp, then there exists a
sequence {yn} of points of X with yn+1 ∈ Fyn such that limn→∞ q(p, yn) = 0,
with the following error estimate:

q(p, yn+1) ≤ q(p, y1)−
n∑

k=1

ϕ(q(p, yk)). (8)

Proof. Since p ∈ Fp, as in proof of Theorem 2.1, we can construct a sequence
{yn} of points of X satisfying

yn+1 ∈ Fyn, q(p, yn+1) ≤ q(p, yn)− ϕ(q(p, yn)) for all n ∈ N and (5).
From (5) we obtain (8). As in proof of Theorem 2.1, we can show limn→∞ q(p, yn) =

0. ¤

3. Periodic point theorems

A self map f of a nonempty set has property P [7] if it satisfies Fix(f) =
Fix(fn) for each n ∈ N.
Theorem 3.1. Let (X, d) be a left K-complete quasi-metric space. If f : X → X
is a weakly q-contractive map, then f has property P .

Proof. Let u ∈ F (fn). We show that q(fu, u) = 0.
If q(fu, u) 6= 0, then q(f2u, fu) ≤ q(fu, u)−ϕ(q(fu, u)) < q(fu, u). Also, we

have q(f3u, f2u) ≤ q(f2u, fu)− ϕ(q(f2u, fu)) ≤ q(f2u, fu) < q(fu, u).
Continuing in this way, we obtain

q(fu, u) = q(fn+1u, fnu) ≤ q(fnu, fn−1u) ≤ · · · ≤ q(f2u, fu) < q(fu, u)

which is a contradiction. Thus we have q(fu, u) = 0.
Simillary, we can show that q(u, fu) = 0. Hence we have q(u, u) ≤ q(u, fu) +

q(fu, u) = 0. By Lemma 1.2 (i), u = fu and f has property P. ¤
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In (6), if φ(t) = t − ϕ(t) for all t ≥ 0 then from Theorem 3.1 we have the
following corollary.

Corollary 3.2. Let (X, d) be a left K-complete quasi-metric space. If a map
f : X → X is satisfying (6), then f has property P .

Corollary 3.3. Let (X, d) be a left K-complete quasi-metric space. If a map
f : X → X is satisfying (7), then f has property P .
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