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OVERVIEWS ON LIMIT CONCEPTS OF A SEQUENCE OF

FUZZY NUMBERS I

JUNG SUNG KWON∗ AND HONG TAE SHIM

Abstract. In this paper, we survey various notions and results related to
statistical convergence of a sequence of fuzzy numbers, in which statistical
convergence for fuzzy numbers was first introduced by Nuray and Savas in
1995. We will go over boundedness, convergence of sequences of fuzzy num-
bers, statistically convergence and statistically Cauchy sequences of fuzzy
numbers, statistical limit and cluster point for sequences of fuzzy numbers,
statistical monotonicity and boundedness of a sequence of fuzzy numbers
and finally statistical limit inferior and limit inferior for the statistically
bounded sequences of fuzzy numbers.
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1. Introduction

Fast [5] introduced an extension of the usual concept of sequential limits
which is called statistical convergence and also independently by Steinhaus [20].
Schoenberg [19] gave some basic properties of statistical convergence and Fridy
[6] introduced the concept of a statistically Cauchy sequence and proved that is
equivalent to statistical convergence. The concepts of limit and cluster point of
a real sequence have been extended in Fridy[6, 7] to a statistical limit and cluster
point using the natural density of a set of positive integers. Fridy [7] was the first
not only to introduce the set of all statistical cluster points and the set of all limit
points but also to discuss their definitions and properties, as well as the specific
relations among them in addition to their relations between the set of all ordinary
limit points. In [7], Fridy investigated the statistical monotonicity for sequences
of real numbers using classical techniques and established some basic results.
Later the concept of statistical bounded and statistical monotonic sequences of
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real numbers were examined by Tripathy [21, 22]. As an application, these ideas
were used in Turnpike theory by Pehlivan and Mammedov [16]. On the side of
sequences of fuzzy numbers, the boundedness and convergence were first intro-
duced by Matloka [12]. Nandra [13] has conclude that the set of bounded and
convergent sequences of fuzzy numbers forms complete metric spaces. Nuray
and Savas [15] introduced the concepts of statistically convergent and statisti-
cally Cauchy sequences of fuzzy numbers. In Aytar [1] he examined the concept
of statistical limit and cluster point for sequences of fuzzy numbers. Aytar and
Pehlivan [2] defined the concepts of statistical monotonicity and boundedness
of a sequence of fuzzy numbers. Congxin and Cong [4] defined the concepts of
the supremum and infimum for sets of bounded fuzzy numbers. Recently, Ay-
tar and Mammadov [3] defined the notions of statistical limit inferior and limit
inferior for the statistically bonded sequences of fuzzy numbers. In the study
they showed that some results established for the sequences of real numbers
are also valid for the sequences of fuzzy numbers. In this overview paper, we
review various concepts and collect fundamental results related to statistically
convergence and statistical limits of sequences of fuzzy numbers. We will go
over boundedness, convergence of sequences of fuzzy numbers, statistically con-
vergence and statistically Cauchy sequences of fuzzy numbers, statistical limit
and cluster point for sequences of fuzzy numbers, statistical monotonicity and
boundedness of a sequence of fuzzy numbers and finally statistical limit inferior
and limit inferior for the statistically bonded sequences of fuzzy numbers. We
based mainly on the materials of the following references([1,2,7,8, 12, 14, 16]).

2. Definitions and Preliminaries

Let D denote the set of all closed intervals A = [A,A] on the real line R. For
A,B ∈ D, define

A ≤ B if and only ifA ≤ BandA ≤ B,

d(A,B) = max(|A−B|, |A−B|).
Then d defines a metric on D and (D, d) is a complete metric space. Also ≤is a
partial order in D. A fuzzy number is a mapping A : R→ [0, 1]. We will denote
by Aα the α-level set of A(that is Aα = {x ∈ R : A(x) ≥ α} ) for all α ∈ (0, 1]
and by A0 the closure of the support of A( that is A0 = cl{x ∈ R : A(x) > 0}).
Let L(R) be the class of the fuzzy sets A satisfying the following conditions;

(1) A1 6= ∅
(2) A0is compact and
(3) A is upper semi-continuous
(4) Aαis convex for allα ∈ [0, 1].

Define, a map

d : L(R)× L(R) → R by d(X,Y ) = supα∈[0,1]d(X
α, Y α).
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Then d is a metric on L(R). For X,Y ∈ L(R), define

X ≤ Y if and only if Xα ≤ Y α for any α ∈ [0, 1].

Then ≤ is a partial order in L(R). The fuzzy numbers X and Y are said to
be incomparable if neither X ≤ Y nor Y ≤ X. We use the notation X 6∼ Y
in this case. We say X < Y , if X ≤ Y and there exists α0 ∈ [0, 1] such that

Xα
0 < Y α

0 or X
α

0 < Y
α

0 . When Y < X or X and Y are incomparable, then we

write X 6< Y . A subset E of L(R) is said to be bounded above if there exists a
fuzzy number µ, called an upper bound of E, such that X ≤ µ for every X ∈ E.
µ is called the least upper bound(sup) of E if µ is an upper bound and is the
smallest of all upper bounds. A lower bound and the greatest lower bound(inf)
are defined similarly. E is said to be bounded if it is both bounded above and
bounded below. If K is a subset of positive integers N , then Kn denote the set

{k ∈ K : k ≤ n}. The natural density of K is given by δ(K) = limn→∞
|Kn|
n ,

where |Kn| denotes the number of elements in Kn. Clearly, finite subsets have
zero natural density and δ(Kc) = 1− δ(K) where Kc is the complement of K.

3. Statistical convergence and limits of sequences of fuzzy numbers

Definition 3.1. A sequence X = (Xk) of fuzzy sets is said to be convergent
to the fuzzy set X0, written as limk Xk = X0, if for every ε > 0 there exists a
positive integer n0 such that d(Xk, X0) < ε for every k > n0.

Definition 3.2. A sequence X = (Xk) of fuzzy sets is said to be statistically
convergent to the fuzzy set X0, written as st− limk Xk = X0, if for every ε > 0
δ({k ∈ N : d(Xk, X0)}) = 0. Clearly, since the natural density of the finite set is
zero, a convergent sequence must be statistically convergent. But the converse
does not true in general.

Theorem 3.3. Let X = (Xk), Y = (Yk) ⊂ L(R).
(a) If st− limk Xk = X0 and c ∈ R, then st− limk cXk = cX0.
(b) If st − limk Xk = X0 and st − limk Yk = Y0, then st − limk(Xk + Yk) =

X0 + Y0.

Theorem 3.4. Let X = (Xk) be a sequence of fuzzy numbers, Then the
following are equivalent.

(a) X is statistically convergent to X0.
(b) There exist Y = (Yk) and Z = (Zk) of fuzzy numbers such thatX = Y +Z,

d(Yk, X0) → 0 as k → ∞ and δ(suppZ) = 0.
(c) There is a subsequenceK = {kn} ofN such that δ(K) = 1 and d(Xk, X0) →

0 as n → ∞ .

Definition 3.5. The fuzzy set X0 is called the limit of the sequence of fuzzy
numbers X = (Xk) if there is a subsequence of X that converges to X0. Let Lx

denote the set of limit fuzzy sets of X.
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Definition 3.6. The fuzzy set X0 is called statistical limit point(s.l.p) of se-
quence of fuzzy sets X = (Xk) if there is a non thin subsequence of X that
converge to X0. Let ΛX denote the set of s.l.p of the sequence X.

Definition 3.7. The fuzzy set X0 is called statistical cluster point(s.c.p) of
sequence of fuzzy sets X = (Xk) if for every ε > 0 δ({k ∈ N : d(Xk, X0) < ε}) >
0.

Let ΓXdenote the set of s.c.p of the sequence X.

Theorem 3.8. If X = (Xk) and Y = (Yk) are sequences of fuzzy numbers such
that δ({k ∈ N : Xk 6= Yk}) = 0, then ΛX = ΛY and ΓX = ΓY .

Theorem 3.9. If X = (Xk) is a sequence of fuzzy sets, then ΛX ⊂ ΓX and
ΓX ⊂ LX .

Proof. Assume that µ ∈ ΓX , say δ({k ∈ N : d(Xk, µ) < ε}) > 0 for everyε >
0. We set {X}k a non thin subsequence of X such that K := {k(j) ∈ N :
d(Xk(j), µ < 0) < ε}, for every ε > 0 and δ > 0. Since there are infinitely many
elements in K, we have µ ∈ LX . ¤

The converse of Theorem 3.9 does not hold in general.

Theorem 3.10. For any sequence of fuzzy sets X = (Xk), ΛX ⊂ ΓX .

The following is statistical analogue of result given for real number sequences
in the classical analysis.

Theorem 3.11. If Xk ≤ Yk ≤ Zk, for all k ∈ K ⊂ N , with δ(K) = 1 and
µ = st− limXk = st− limZk, then st− limYk = µ.

4. Statistical monotonicity and boundedness of a sequence of fuzzy
numbers

Definition 4.1. The sequence X = (Xk) is said to be statistically bounded
from above if there is a fuzzy number µ ( called statistical upper bound) such
that δ({k ∈ N : Xk > µ} ∪ {k ∈ N : Xk 6∼ µ}) = 0. Similarly, X = (Xk) is said
to be statistically bounded from below provided that there is a fuzzy number
ν( called the statistical lower bound) such that δ({k ∈ N : Xk > ν} ∪ {k ∈ N :
Xk 6∼ µ}) = 0. If the sequence X = (Xk) is both statistically bounded above and
statistically bounded below then it is called statistically bounded. Generally, if
a sequence X = (Xk) is bounded, it is also statistically bounded but not vice
versa.

Definition 4.2. A sequence is said to be statistically monotonic increasing if
there is a subset K = {ki : k1 < k2 < · · · } ⊂ N such that δ(K) = 1 and
(Xkn) is monotonically increasing. Similarly, statistically monotonic decreasing
can be defined. The fuzzy set sequence X = (Xk) is called statistically mono-
tonic sequence if it is statistically monotonic increasing or statistically monotonic
decreasing.
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Theorem 4.3. If X = (Xk) is statistically bounded sequence of fuzzy numbers,
then X can be written as X = Y + Z where Y = (Yk) is bounded and Z is
statistically 0 sequence( that is δ({k ∈ N : Zk 6= 0}) = 0).

Theorem 4.4. A fuzzy number sequence X = (Xk) is statistically bounded if
and only if there is a set K = {ki : k1 < k2 < · · · } ⊂ N such that δ(K) = 1 and
(Xkn

) is bounded.

Theorem 4.5. A statistically monotonic sequence of fuzzy numbers is statisti-
cally convergent if and only if it is statistically bounded.

Theorem 4.6. If X = (Xk) is statistically monotonic increasing(decreasing)
sequence, then δ({k ∈ N : Xk 66= Xk+1}) = 0 ( δ({k ∈ N : Xk 6≥ Xk+1}) = 0).
Now we give a Decomposition theorem for statistically bounded sequences of
fuzzy numbers

Theorem 4.7. If X = (Xk) is statistically bounded sequence of fuzzy numbers,
then we can write X = Y +Z where Y = (Yk) is bounded and δ({k ∈ N : Zk 6=
0}) = 0.

Proof. Let X = (Xk) be statistically bounded sequence of fuzzy numbers. For
M > 0 large enough, K = {k ∈ N : d(Xk, 0) > M} satisfies δ(K) = 0. Define
the sequences Y = (Yk) and Z = (Zk) as follows ;

Yk =

{
Xk if k ∈ Kc

0 otherwise
(1)

Zk =

{
Xk if k ∈ Kc

0 otherwise
(2)

Then, obviously, we have that (Xk) = (Yk) + (Zk) for all k ∈ N , Y = (Yk) is
a bounded sequence and δ({k ∈ N : Zk 6= 0}) = 0 . ¤

Following Savas [16], we have the following;

Theorem 4.8. X = (Xk) is statistically bounded if and only if there is K =
{ki : k1 < k2 < · · · } such that δ(K) = 1 and {Xkn} is bounded.

Theorem 4.9. A statistically monotonic sequence X = (Xk) is statistically
convergent if and only if it is statistically bounded.

5. Statistical Limit Inferior and Limit Superior

In this section we introduce the concepts of statistical limit superior and limit
inferior for statistically bounded sequences of fuzzy numbers. Given a sequence
X = (Xk) we define the following sets;

AX = {µ ∈ L(R) : δ(k ∈ N : Xk < µ}) 6= 0}
AX = {µ ∈ L(R) : δ(k ∈ N : Xk > µ}) = 1}
BX = {µ ∈ L(R) : δ(k ∈ N : Xk > µ}) 6= 0}
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BX = {µ ∈ L(R) : δ(k ∈ N : Xk < µ}) = 1}
The set AX and BX are the sets of statistical lower bounds and statistical

upper bounds, respectively. It is clear that if the sequence X = (Xk) is statisti-
cally bounded then these sets are non-empty. It is also clear that the sets AX

and BX have a lower bound and the sets AX and BX have an upper bound.

Definition 5.1. IfX = (Xk) is statistically bounded sequence of fuzzy numbers,
then the statistical limit inferior ofX = (Xk) is given by st−liminfX = infAX .
Also, the statistical limit superior of X = (Xk) is given by st − limsupX =
supBX .

Theorem 5.2. If X = (Xk) is statistically bounded, then infAX = supAX and
supBX = infBX .

Theorem 5.3. Let X = (Xk) be a statistically bounded sequence of fuzzy
numbers. If ν = st− liminfX, then

δ({k ∈ N : Xk < ν − ε}) = 0,

δ({k ∈ N : Xk < ν + ε} ∪ {k ∈ N : Xk 6∼ ν + ε}) 6= 0

for every ε > 0.

Proof. We suppose that there is some ε > 0 such that δ({k ∈ N : Xk < ν−ε}) 6=
0. This means that ν− ε ∈ AX . By definition of AX , we have ν ≤ ν− ε which is
a contradiction. For the second one, assume that it is not true. That is, there is
ε > 0 such that δ({k ∈ N : Xk < ν + ε}) = 0 and δ({k ∈ N : Xk 6∼ ν + ε}) = 0 .
For each k ∈ N , only the following three cases are possible;

Xk < ν + ε,Xk 6∼ ν + ε and Xk ≥ ν + ε.

Then we obtain

Xk < ν + ε ∪Xk 6∼ ν + ε ∪Xk ≥ ν + ε = N

Thus we have
δ({k ∈ N : Xk ≥ ν + ε}) = 1.

This means that ν + ε ∈ AX . Hence we can write ν+ ε ≤ supAX = infAX = ν.
This is impossible. ¤

It is known that the converse of theorem 5.3 is valid for the sequences of real
numbers but for sequences of fuzzy numbers it may not be true.

Theorem 5.4. Let X = (Xk) be a statistically bounded sequence of fuzzy
numbers. If ν = st− limsupX, then

δ({k ∈ N : Xk ≥ ν + ε}) = 0

δ({k ∈ N : Xk ≥ ν − ε} ∪ {k ∈ N : Xk 6∼ ν − ε}) 6= 0

for every ε > 0.

Theorem 5.5. Let X = (Xk) be a statistically bounded sequence of fuzzy
numbers. Then we have
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st− liminfX ≤ st− limsupX.

Theorem 5.6. If X = (Xk) is a statistically convergent to X0. Then we have

st− liminfX = st− limsupX.

Proof. Let ε > 0 be given. Assume that is statistically convergent to X0, then
we have

δ({k ∈ N : d(Xk, X0) ≥ ε}) = 0,

δ({k ∈ N : d(Xk, X0) < ε}) = 1,

δ({k ∈ N : supα∈[0,1]d(X
α
k, X

α
0) < ε}) = 1.

In other words, for almost all k,

supα∈[0,1]d(X
α
k, X

α
0) < ε or X0 − ε < Xk < X0 + ε.

Therefore we have the following;

1) δ({k ∈ N : Xk < X0 + ε}) = 1. It means that X0 − ε ∈ BX and that
st− limsupX = infBX = µ ≤ X0) + ε.

2) δ({k ∈ N : Xk > X0 − ε}) = 1. It means that X0 − ε ∈ AX and that
st− liminfX = supAX = ν ≥ X0)− ε .

From 1) and 2), we have X0 − ε ≤ Xk ≤ X0 + ε. Since ε > 0 is arbitrary, we
have ν = µ = X0. ¤
Theorem 5.7. Let X = (Xk) be a sequence of fuzzy numbers and st −
liminfXk = st − limsupXk = µ. Suppose that there is an ε0 such that for
each ε ∈ (0, ε0),

δ({k ∈ N : Xk 6∼ ν + ε}) = 0 and δ({k ∈ N : Xk 6∼ ν − ε}) = 0.

Then we have st− limXk = µ.

Proof. Let ε ∈ (0, ε0) be given. Then δ({k ∈ N : Xk < µ − ε}) = 0 because
st − liminfXk = µ. Similarly we have δ({k ∈ N : Xk > µ + ε}) = 0 since
st− limsupXk = µ. From these two equalities and from the hypothesis

δ({k ∈ N : Xk 6∼ ν + ε}) = 0 and δ({k ∈ N : Xk 6∼ ν − ε}) = 0.

We have
δ(K1(ε)) = 1 and δ(K2(ε)) = 1

with

K1 = {k ∈ N : Xk ≥ µ− ε}andK2 = {k ∈ N : Xk ≤ µ+ ε}.
Now

K1(ε) ∩K2(ε) = {k ∈ N : µ− ε ≤ Xk ≤ µ+ ε}
= {k ∈ N : d(Xk, µ) ≤ ε}.
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Therefore we have δ({k ∈ N : d(Xk, µ) ≤ ε}) = 1 and hence

δ({k ∈ N : d(Xk, µ) > ε}) = 0.

Since ε is arbitrary, we have st− limXk = µ. ¤
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