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RIGHT SEMIDIRECT SUMS IN NEAR-RINGS

YONG UK CHO

ABSTRACT. In this paper, we begin with some basic concepts of substruc-
tures of near-rings, and then using some right substructures of near-rings,
we may define the right semidirect sum of near-rings.

Next, we investigate that every near-ring can be decomposed with right
semidirect sum of right ideal by right R-subgroup, and then give some ex-
amples.
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1. Introduction

Throughout this paper, a (left) near-ring R is an algebraic system (R, +, ")
with two binary operations, say + and - such that (R, +) is a group (not neces-
sarily abelian) with neutral element 0, (R, -) is a semigroup and a(b+c) = ab+ac
for all a,b,c in R. We note that obviously, a0 = 0 and a(—b) = —ab for all a,b
in R, but in general, 0a # 0 and (—a)b # —ab.

If a near-ring R has a unity (or identity) 1, then R is called unitary. An
element d in R is called distributive if (a + b)d = ad + bd for all @ and b in R.

We consider the following substructures of near-rings: Given a near-ring R,
Ry = {a € R | 0a = 0} which is called the zero symmetric part of R,

R.={a€R|0a=a}={a€R|ra=a, forallr€ R} ={0a € R|a <€ R}

which is called the constant part of R, and Ry = {a € R | a is distributive}
which is called the distributive part of R.

A non-empty subset S of a near-ring R is said to be a subnear-ring of R, if S
is a near-ring under the operations of R, equivalently, for all a,bin S, a—b e S
and ab € S. Sometimes, we denote it by S < R.

We note that Ry and R, are subnear-rings of R, but R, is not a subnear-ring
of R. A near-ring R with the extra axiom Oa = 0 for all @ € R, that is, R = Ry is
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said to be zero symmetric, also, in case R = R, R is called a constant near-ring,
and in case R = Ry, R is called a distributive near-ring.

Let (G,+) be any group (not necessarily abelian). Then we may introduce
simple example of near-rings as following:

First, if we define multiplication on G as zy = y for all 2,y in G, then (G, +, -)
is a near-ring, because (xy)z = z = z(yz) and z(y+ 2) = y+ z = ay + a2, for all
x,y,z in G, but in general, 0x = 0 and (z + y)z = xz + yz are not true. These
kinds of near-rings are constant near-rings.

Next, in the set

M(G)={f|f:G— G}

of all the self maps of G, if we define the sum f + g of any two mappings f,g
in M(G) by the rule z(f + g) = «f + xg for all z € G and the product f-g by
the rule z(f - g) = (xf)g for all x € G, then (M(G),+,-) becomes a near-ring.
It is called the self map near-ring on the group G. Also, we can define the
substructures of (M (G),+,-) as following: My(G) = {f € M(G) | 0f = 0} and
M.(G) ={f € M(G) | f is constant}, then (My(G),+,") is a zero symmetric
near-ring.

For the remainder basic concepts and results on near-rings, we can refer to
G. Pilz [5].

2. Some results of right substructures in near-rings

An ideal of R is a subset I of R such that (i) (I, +) is a normal subgroup of
(R, +), (ii) a(I +b) —ab C I for all a,b € R, equivalently, al C I for all a € R,
(i) (I +a)b—ab C I for all a,b € R. If I satisfies (i) and (ii) then it is called a
left ideal of R. If I satisfies (i) and (iii) then it is called a right ideal of R.

On the other hand, an R-subgroup of R is a subset H of R such that (i)
(H, +) is a subgroup of (R, +), (ii) RH C H and (iii) HR C H. If H satisfies
(i) and (ii) then it is called a left R-subgroup of R. If H satisfies (i) and (iii) then
it is called a right R-subgroup of R. In case, (H, +) is normal in above, we say
that normal R-subgroup, normal left R-subgroup and normal right R-subgroup
instead of R-subgroup, left R-subgroup and right R-subgroup, respectively.

Now we can define a new kind of definition as following:

Definition 2.1. A near-ring R is a right semidirect sum of substructure N by
substructure K of R if (i) R= N+ K, (ii) NN K =0, (iii) N is a right ideal,
and (vi) K is a right R-subgroup. One calls that K is the complement of N.
Sometimes, We write it as R = N W K.

Lemma 2.2. (/5] 1.13) Let R be a near-ring. Then we have that (R, +) =
(Ro, +) ® (Re, +) as additive subgroups.

An element e of a near-ring R is called an idempotent if e? = e
For an element x of a near-ring R, the (right) annihilator z is of the form

Ann(z) = {a € R | za =0}
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Also, for any nonempty subset X of a near-ring R, the (right) annihilator of
X is of the form

Ann(X)={a € R| za=0,Vx € X} = NgexAnn(z)

Theorem 2.3. For any element x of a near-ring R, Ann(zx) is a right ideal of
R. Moreover, if X is a nonempty subset of a near-ring R, then Ann(X) is a
right ideal of R.

On the other hand, if X is a right R-subgroup of R, then Ann(X) is an ideal
of R.

Proof. Certainly, 0 € Ann(x), because 20 = 0. Let a, b € Ann(x). Then za =0
and xb =0, so z(a —b) = za —2b=0—0 = 0. Hence, a — b € Ann(z), and so
(Ann(z), +) is a subgroup of (R, +).

Next, let a € Ann(x) and r € R. Then since za = 0,

z(r+a—r)=ar+za—axr=ar+0—azr=0

sor+a—r € Ann(x), and (Ann(z), +) is a normal subgroup of the group
(R, +).
Finally, let a € Ann(z) and r, s € R. From za = 0, we obtain that

z[(a+1r)s —rs] = (za + xr)s — xrs = 0+ (zr)s — z(rs) = 0.

Consequently, Ann(z) is a right ideal of R.

Moreover, from the definition of Ann(X) and the fact that the intersection
of a family of right ideals of R is again a right ideal of R, we have that Ann(X)
is a right ideal of R.

On the other hand, for any a € Ann(z) and r € R, since X is right R-
subgroup, Vx € X, xa € X, thus we have that

z(ra) = (zr)a = 2'a = 0.
Where 2/ € X. Therefore, Ann(X) is an ideal of R. O
We have the following property which is useful in the sequel.

Theorem 2.4. If e is any idempotent element of a near-ring R, then eR =
{ea | a € R} is a right R-subgroup of R.

Proof. Clearly, eR is nonempty, because 0 = €0 € eR. For any ea, eb € eR, ea—
eb=ce(a—0) € eR, so eR is a subgroup of (R, +). Also, clearly eR = {ea | a €
R} is a right R-subgroup of R. O

Theorem 2.5. Let e be an idempotent element of a near-ring R. Then the near-
ring R is a right semidirect sum of a right ideal Ann(e) by a right R-subgroup
eR.

Proof. Certainly, Ann(e) + eR C R. Let r € R. Consider that r = r —er + er.
Then we see that r — er € Ann(e) and er € eR. Hence, Ann(e) + eR = R.
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Next, let © € Ann(e) NeR. Then ez = 0 and = = ea for some a in R, and
hence
r=-eaq=ceeaq=cex=0.
Consequently, we obtain that Ann(e) NeR = {0}.
Now, applying the theorems 2.3 and 2.4, our proof is complete. O

Corollary 2.6. Let R be a near-ring. Then the near-ring R is a right semidirect
sum of a substructure Ry by a substructure R.. That is, R = Ry W R,.

Proof. Since 0 is an idempotent in R, let e = 0, an idempotent. Then we can
deduce easily that Ann(e) = Rog and eR = R, by the definition of R.. O

Since every element of a constant near-ring is a left identity, it is also an
idempotent. Thus we have the following:

Theorem 2.7. For any near-ring (R, +, ), every element of R. is an idem-
potent.

Definition 2.8. From Corollary 2.6 and theorem 2.7, there are lots of examples
of right semidirect sums of substructures of arbitrary near-ring R, since every
element a of R, is an idempotent, from theorem 2.5, each idempotent a gives us
a decomposition R = Ann(a) W aR. Also, we have M(G) = My(G) W M.(G).
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