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OPTIMAL PARTIAL HEDGING USING COHERENT

MEASURE OF RISK†

JU HONG KIM

Abstract. We show how the dynamic optimization problem with the cap-
ital constraint can be reduced to the problem to find an optimal modified

claim ψ̃H where ψ̃ is a randomized test in the static problem. Coherent
risk measure is used as risk measure in the L∞ random variable spaces.
The paper is written in expository style to some degree. We use an average
risk of measure(AVaR), which is a special coherent risk measure, to see how
to hedge the modified claim in a complete market model.
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1. Introduction

We consider an agent or an investor who sell a contingent claim and want
to get rid of the associated shortfall risk by means of a dynamic hedging strat-
egy. The shortfall risk is the difference between the payoff of the contingent
claim and the value of the agent’s or the investor’s hedging strategy at matu-
rity. It is known that there is a dynamic self-financing hedging strategy with
arbitrage-free hedging price to super-replicate a contingent claim in complete or
incomplete markets. The super-hedging price is the minimal initial capital that
an agent or an investor has to invest to find a strategy which dominates the
claim payoff with certainty [9]. The super-hedging price of a contingent claim
is given by the supremum of the expected values over all equivalent martingale
measures. If an agent or an investor sells the claim for the super-hedging price,
then he/she could eliminate the shortfall risk completely by choosing a suitable
hedging strategy. The corresponding value process is a supermartingale under
equivalent martingale measures. The super-hedging strategy is determined by
the optional decomposition [10]. The prices derived by super-replication are
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too high and not acceptable in practice. Then the claim should be sold for a
price less than the super-hedging price. With the initial capital less than the
super-hedging price, i.e., under the capital constraint an agent or an investor
is unable to eliminate all exposed risk associated to the contingent claim com-
pletely and so wants to find optimal strategies which minimize the shortfall risk.
The acceptable least price of the claim is given by the shortfall risk measure ρ
with the investor’s loss function and his/her threshold. In other words, he/she
is seeking optimal partial hedging strategies with the initial capital less than the
super-hedging price by taking some risks. Föllmer and Leukert [5] constructed a
quantile hedging strategy which maximizes the probability of a successful hedge
under the objective measure P under the capital constraint. In the quantile
hedging approach, the size of the shortfall is not taken into account but only the
probability of its occurrence. Föllmer and Leukert [6] also introduced optimal
hedging strategies which minimize the shortfall risk under the capital constraint
by using the expected loss functions as risk measures. In [6], the risk measure ρ
is the form of ρ(X) = EP[`(X+)], where X is a random variable on (Ω,F), P is
a fixed probability measure on Ω, and ` : R → R is a strictly convex function.
Nakano [11] uses coherent risk measures as risk measures in the L1(Ω,F ,P) ran-
dom variable spaces instead of the loss function. Notice that the L1 space is
between L∞(Ω,F ,P) and L0(Ω,F ,P). Arai [1] obtained robust representation
results of shortfall risk measures on Orlicz hearts under the continuous time
setting. The Orlicz hearts setting allows us to treat various loss functions and
various claims in a unified framework. Coherent risk measure is introduced by
Artzner et al. [2] as risk measures, and is extended to general probability spaces
by Delbaen [3].

There is no explicit explanation of relations between the dynamic optimization
problem and the static problem in the literature. In this paper, we show that
the dynamic optimization problem with the capital constraint can be reduced to
the problem to find an optimal modified claim ψ̃H where ψ̃ is a randomized test
in the static problem. Coherent risk measure is used as risk measure in the L∞

random spaces. Average risk of measure(AVaR), which is a special coherent risk
measure, is used to see how to hedge the modified claim in a complete market
model.

This paper is constructed as follows. The definition of a superhedging price
is given in section 2. It is shown how the dynamic hedging problem can be
reduced to the static problem in section 3. Optimal solution is found when the
risk measure is given by the average value at risk in section 4. Optimal partial
hedging in a complete market model is given in section 5.
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2. Mathematical settings and superhedging

Let (Ω,F , (Ft)0≤t≤T ,P) be a complete filtered probability space. Let S =
(St)0≤t≤T be an adapted positive process which is a semimartingale. It is as-
sumed that the riskless interest rate is zero for simplicity and M = {Q |Q ∼
P, S is a local martingale under Q} 6= ∅ to avoid the arbitrage opportunities [4].

Definition 2.1. A self-financing strategy (x, ξ) is defined as an initial capital
x ≥ 0 and a predictable process ξt such that the value process (value of the
current holdings)

Xt = x+

∫ t

0

ξudSu, t ∈ [0, T ]

is P-a.s. well defined.

The self-financing strategy (x, ξ) is called admissible if the corresponding value
process Xt satisfies

Xt = x+

∫ t

0

ξu dSu ≥ 0 ∀t ∈ [0, T ].

Define the admissible set X (α) as

X (α) =
{
(x, ξ) | (x, ξ) is an admissible strategy and x ≤ α

}
.

Definition 2.2. A contingent claim H is called attainable (or replicable, redun-
dant) if there exists admissible strategy (x0, ξ) such that

H = x0 +

∫ T

0

ξudSu.

In discrete time,

H = x0 +

T∑
t=1

ξt · (St − St−1).

See the book [7] or the paper [4] for the following theorems (2.3), (2.4) and (2.5).

Theorem 2.3. Any attainable claim H is integrable with respect to each equiv-
alent martingale measure (or pricing measure),

EQ[H] < ∞ ∀Q ∈ M.

Moreover, ∀Q ∈ M
Xt = EQ[H|Ft] Q− a.s.

is a non-negative Q-martingale.

Theorem 2.4. The market model is arbitrage-free if and only if the M of all
equivalent martingale measure is non-empty.
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Theorem 2.5. Let (Xt)t≥0 be a stochastic process. Then
X is a value process of self-financing portfolio if and only if X is a local

martingale with respect to all Q ∈ M.
X is a capital of wealth and consumption portfolio if and only if X is a

supermartingale with respect to all Q ∈ M.

Lemma 2.6. Let H ≥ 0 be a FT -measurable contingent claim.Then there exists
admissible strategy (x0, ξ) ∈ X (α) such that

H ≤ x0 +

∫ T

0

ξudSu P− a.s. (2.1)

if and only if

H ∈
{
X ≥ 0

∣∣∣X is FT −measurable, sup
Q∈M

EQ[X] ≤ x0

}
:= W. (2.2)

Proof. Suppose that (x0, ξ) ∈ X (α) is the admissible strategy satisfying (2.1).

Let Q ∈ M. Since the value process Xt = x0+
∫ t

0
ξudSu is Q-martingale, we get

EQ[H] ≤ EQ
[
x0 +

∫ T

0

ξudSu

]
= x0.

So H ∈ W .
Now let H ∈ W . Define X as

Xt := ess supQ∈MEQ[H|Ft].

Then X0 = ess supQ∈MEQ[H] ≤ x0 since H ∈ W . Since the process Xt is Q-
supermartingale, the optional decomposition theorem implies that there exists
an admissible strategy (X0, ξ) and an increasing optional process Ct with C0 = 0
such that

Xt = X0 +

∫ t

0

ξudSu − Ct P− a.s..

Hence we have

H = EQ[H|FT ] = EQ[XT |FT ] ≤ XT = X0 +

∫ T

0

ξudSu − CT ≤ X0 +

∫ T

0

ξudSu.

The first equality holds since H is FT -measurable and the second one does by
the definition of Xt. The first inequality holds since Xt is Q-supermartingale.
Hence we get the equation (2.1) by considering X0 ≤ x0. ¤

Lemma (2.6) means that the pricing rule of H, i.e., EQ[H] is less than or
equal to x0 which is the initial capital of the admissible superhedging strategy
(x0, ξ) for H.

Definition 2.7. The superhedge price H0 for H is defined as

H0 = inf
{
x
∣∣∣ ∃ admissible strategy(x, ξ) such that H ≤ x+

∫ T

0

ξudSu P− a.s.
}
.



Optimal hedging problems in an incomplete financial market 991

By the Lemma (2.6) we can see the superhedge price is H0 = supQ∈M EQ[H].
That is, H0 is the smallest initial capital eliminating all shortfall risk. The
seller of H can cover almost any possible obligation from the sale of H and
thus eliminate completely the corresponding risk. The following example in the
book [7] shows that the superhedge price of H is twice as the initial price of the
underlying asset. So the hedging price of the seller is too high and can’t be used
in practice.

Example 2.8. Consider a single risky asset S = S1 whose initial price is 1. Let
the initial capital S0 ≡ 1 and the riskless interest rate r = 0. Let S be a random
variable of the distribution, i.e., S is P− a.s. integer-valued and

P[S = k] =
1

2

e−22k

k!
for k = 0, 1, 2, . . . .

If we take the risky asset price as S0 = 1 at time 0, then P is a risk-neutral
probability measure and there is no-arbitrage in the market model, since

EP[S] =
1

2
× 2 = 1,

and so

(1 + r)TS0 = EP[S],

which shows that the risky asset price grows, on average, at the risk-free rate.
Let H = (S −K)+ be a payoff function of a call option of underlying asset

S. If we define

gn(k) := 2

(
e2 − 2e2

n

)
· I{0}(k) + (n− 1)! · 22−ne2 · I{n}(k), k = 0, 1, . . . ,

then EP[gn(S)] = 1 and the measure Qn ∈ M defined as

dQn = gn(S)dP

satisfies

EQn
[
(S −K)+

]
= 2

(
e2 − 2e2

n

)
(0−K)+P[S = 0]

+ (n− 1)! · 22−ne2 · (n−K)+ · P[S = n] = 2

(
1− K

n

)+

.

Letting n → ∞, we can see that the superhedge price is given by

sup
Q∈M

EQ[H] = 2,

which is an arbitrage-free price of H, but is too expensive price which is twice
higher than the initial price S0 = 1.
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When the seller is unwilling to invest the superhedge price in a hedging strat-
egy, the seller looks for the optimal partial hedging strategy minimizing the
problem

min
(x,ξ)∈X (α)

[
ρ
((

H − x−
∫ τ

0

ξudSu

)+)]
(2.3)

with the initial capital constraint

0 < α < H0 = sup
Q∈M

EQ[H]. (2.4)

Here ρ in (2.3) is a coherent risk measure [2] defined in Definition (2.9). The
traditional V aR does not satisfy the subadditivity, which means that if you add
two portfolios together, then the total risk does not increase more than adding
the two risks separately. Artzner et al. [2] introduced the risk measure coherent
satisfying some axioms to cover some flaws in V aR.

Definition 2.9. A coherent risk measure ρ : L0(Ω,F ,P) → R ∪ {∞} is a
mapping satisfying for X, Y ∈ L0(Ω,F ,P)

(1) ρ(X + Y ) ≤ ρ(X) + ρ(Y ) (subadditivity),
(2) ρ(λX) = λρ(X) for λ ≥ 0 (positive homogeneity),
(3) ρ(X) ≥ ρ(Y ) if X ≤ Y (monotonicity) ,
(4) ρ(X +m) = ρ(X)−m for m ∈ R (cash invariance)

Artzner et al. [2] state axioms for acceptance set and define ”the measure of
risk of an unacceptable position, as the minimum extra capital, which, invested
in the reference instrument, makes the future value of the modified position
become acceptable.” When ρ(X) is positive, the number ρ(X) can be thought
of as the minimum extra cash the agent has to add to the risky position X, and
invest in the reference instrument, to be allowed to proceed with his/her plans.
When ρ(X) is negative, the amount of cash −ρ(X) can be withdrawn from the
position or it can be received as restitution, as in the case of organized markets
for financial futures [2].

The subadditivity and positive homogeneity can be relaxed to a weaker quan-
tity, i.e., convexity

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) ∀λ ∈ [0, 1],

which means diversification should not increase the risk.

3. Reduction to the static problem

In this section, we show how the dynamic hedging problem can be reduced
to the static problem. Assume that

0 < α < H0 = sup
Q∈M

EQ[H].

Let ρ be a coherent measure of risk defined in L∞(Ω,F ,P) throughout this
paper.
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Definition 3.1. An admissible strategy (x∗, ξ∗) ∈ X (α) is called robust-efficient
if it is the optimal solution:

(x∗, ξ∗) ∈ argmin(x,ξ)∈X (α)

[
ρ
((

H − x−
∫ τ

0

ξudSu

)+)]
.

Definition 3.2. A Fτ -measurable random variableX∗ is calledmaxmin-optimal
if it is the optimal solution:

X∗ ∈ argmin0≤X≤H,EQ[X]≤α,Q∈Mρ(H −X). (3.5)

Theorem 3.3. Let H ≥ 0 be a Fτ -measurable contingent claim. If the claim
X∗ with initial capital α is a maxmin-optimal solution, then the super-hedging
strategy (x∗, ξ∗) ∈ X (α) for the claim X∗ is robust-efficient. Conversely, if (x̃, ξ̃)
is a robust-efficient strategy, then the following claim

X̃ :=

(
x̃+

∫ τ

0

ξ̃udSu

)
∧H (3.6)

is maxmin-optimal.

Proof. Let the claim X∗ with initial capital α be a maxmin-optimal solution.
Then 0 ≤ X∗ ≤ H, supQ∈M EQ[X∗] ≤ α. The lemma (2.6) implies that there
exist (x∗, ξ∗) ∈ X (α) such that

X∗ ≤ x∗ +
∫ τ

0

ξ∗udSu, P− a.s.

For each (x, ξ) ∈ X (α) define X as

X :=

(
x+

∫ τ

0

ξudSu

)
∧H.

Then X is Fτ -measurable, 0 ≤ X ≤ H and EQ[X] ≤ x ≤ α. Moreover, for each
(x, ξ) ∈ X (α) we have

[
ρ
((

H − x−
∫ τ

0

ξudSu

)+)]
= ρ(H −X) ≥ ρ(H −X∗)

≥ ρ
((

H − x∗ −
∫ τ

0

ξ∗udSu

)+)
.

Hence the admissible strategy (x∗, ξ∗) ∈ X (α) is robust-efficient. Moreover, the
minimal risk for the maxmin-optimal claim X∗ with initial capital α is given by

min(x,ξ)∈X (α)

[
ρ
((

H − x−
∫ τ

0

ξudSu

)+)]
= ρ(H −X∗).

Conversely, let an admissible strategy (x̃, ξ̃) ∈ X (α) be robust-efficient. From
the equation (3.6), we have

0 ≤ X̃ ≤ H, EQ[X̃] ≤ x̃. (3.7)
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Since

ρ(H − X̃) = ρ
((

H − x̃−
∫ τ

0

ξ̃udSu

)+)

≤ ρ
((

H − x−
∫ τ

0

ξudSu

)+)
, (x, ξ) ∈ X (α),

we have

min(x,ξ)∈X (α)

[
ρ
((

H − x−
∫ τ

0

ξudSu

)+)]
= ρ(H − X̃). (3.8)

The equations (3.7) and (3.8) imply that

X̃ ∈ argmin0≤X≤H,EQ[X]≤α,Q∈Mρ(H −X).

Thus X̃ is maxmin-optimal. ¤

Notice that the Theorem(3.3) still holds if the risk measure ρ might be re-
placed by ρ(X) = supQ∈M EQ[`(X+)], which is a convex measure of risk.

Define R and R0 as

R := {ψ | ψ : Ω → [0, 1], ψ is FT −measurable},
R0 :=

{
ψ ∈ R

∣∣∣ sup
Q∈M

EQ[ψH] ≤ α

}
,

respectively.
The Theorem (3.3) states that the optimal hedging strategy can be con-

structed as two steps. The first step is to find the maxmin-optimal solution X∗

in the static problem (3.5) and the second step is to fit the terminal value XT

of an admissible strategy to the claim X∗.
Let X∗ be a maxmin-optimal solution in the static problem (3.5) and X̃ :=

H ∧ X∗. Then we can conclude that X̃ is also the maxmin-optimal solution,
since 0 ≤ X̃ ≤ H, EQ[X̃] ≤ α and H−X̃ = H−H∧X∗ = H−X∗. So it may be
assumed that 0 ≤ X∗ ≤ H, or equivalently, that X∗ = Hψ∗ for ψ∗ ∈ R0. So the
dynamic optimization problem (2.3) with the constraint (2.4) can be restated as

two steps. The first one is to find an optimal modified claim ψ̃H where ψ̃ is the
solution of the static problem

min
ψ∈R0

ρ((1− ψ)H) = ρ((1− ψ̃)H).

The second one is to find a superhedging strategy for the modified claim ψ̃H.

Lemma 3.4. Let (ξn)n≥1 be a sequence in L0(Ω,F ,P) such that supn |ξn| < +∞
P-a.s.. Then there exists a sequence of convex combinations

ηn ∈ conv{ξn, ξn+1, . . .}
which converges P-a.s. to some η ∈ L0(Ω,F ,P).
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Definition 3.5. The risk measure ρ : L∞ → R is said to have the Fatou property
if for any bounded sequence (Xn)n≥0 which converges P-a.s. to some X,

ρ(X) ≤ lim infn→∞ρ(Xn).

Proposition 3.6. Let ρ : L∞ → R be a coherent risk measure which has the
Fatou property. Then there exists a randomized test ψ̃ ∈ R0 which is the optimal
solution of the static problem:

min
ψ∈R0

ρ((1− ψ)H) = ρ((1− ψ̃)H). (3.9)

Proof. The proof is similar to the one of Proposition 8.11 in [7]. Take ψn ∈ R0

such that

ρ((1− ψn)H) ↘ inf
ψ∈R0

ρ((1− ψ)H) as n → ∞.

By the lemma (3.4), there exist convex combinations ψ̃n ∈ conv{ψn, ψn+1, . . .}
and ψ̃ ∈ R such that ψ̃n → ψ̃ P-a.s as n → ∞.

The sequence ψ̃n can be expressed as

ψ̃n =

m∑

i=1

λn
ki
ψki , n ≤ k1 < · · · < km,

m∑

i=1

λn
ki

= 1, λn
ki

≥ 0.

The Fatou property of ρ implies that

ρ((1− ψ̃)H) ≤ lim infn↑∞ρ((1− ψ̃n)H). (3.10)

The convexity of ρ implies that

ρ((1− ψ̃n)H) ≤ ρ
( m∑

i=1

λn
ki
(1− ψki)H

)
≤

m∑

i=1

λn
ki
ρ((1− ψki)H)

≤
m∑

i=1

λn
ki
ρ((1− ψn)H) = ρ((1− ψn)H). (3.11)

From the equations (3.10) and (3.11), we have

ρ((1− ψ̃)H) ≤ inf
ψ∈R0

ρ((1− ψ)H).

Moreover, Fatou’s lemma implies that

EQ[ψ̃H] ≤ lim infn↑∞EQ[ψ̃nH] ≤ α for all Q ∈ M.

Therefore, ψ̃ ∈ R0 and the proof is done. ¤

4. Optimal solution of AVaR

In this section, we examine the Proposition (3.6) by taking the coherent risk
measure ρ(X) = AV aRλ(X). For λ ∈ (0, 1), a λ-quantile of a random variable
X on (Ω,F ,P) is a real number q such that

P[X < q] ≤ λ ≤ P[X ≤ q].
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The upper and the lower quantiles functions of X are defined as

q+X(λ) = inf{x ∈ R |P[X ≤ x] > λ} = sup{x ∈ R |P[X < x] ≤ λ},
q−X(λ) = sup{x ∈ R |P[X < x] < λ} = inf{x ∈ R |P[X ≤ x] ≥ λ},

respectively.

Definition 4.1. The Average Value at Risk at level λ ∈ (0, 1] of a random
variable X ∈ L1 is defined as

AV aRλ(X) := − 1

λ

∫ λ

0

qX(t) dt,

where qX(t) is a quantile function of X.

Theorem 4.2 ([7]). For λ ∈ (0, 1] and X ∈ L∞, AV aRλ is a coherent risk
measure which has Fatou property and is represented as

AV aRλ(X) = max
Q∈Qλ

EQ[−X], (4.12)

where Qλ is defined as

Qλ =
{
Q << P

∣∣∣ dQ
dP

≤ 1

λ
P− a.s.

}
.

Remark 4.3. For λ ∈ (0, 1), the maximum in (4.12) is attained by the measure
Q0 ∈ Qλ, whose density is given by

dQ0

dP
=

1

λ
(I{X<q} + κI{X=q}), (4.13)

where q is a λ-quantile of X, and where κ is defined as

κ =

{
0 if P[X = q] = 0,
λ−P[X<q]
P[X=q] o.w.

. (4.14)

If Qλ is a singleton set, then the average value at risk can be shown that
AV aRλ(X) = 1

λE[−X] (see the Proposition (4.6)). When the risk measure is
given by ρ(X) = E[X], the static problem (3.9) is to maximize the expectation

E[ψH]

with the constraint
sup
P∗∈M

EP
∗
[ψH] ≤ α, ψ ∈ R.

Assume that E[H] > 0. Define the equivalent measures Q and Q∗ as

dQ
dP

=
H

E[H]
and

dQ∗

dP∗
=

H

EP∗ [H]
.

Then the static problem can be written as the problem of maximizing

EQ[ψ]
with the constraint

EQ
∗
[ψ] ≤ α

EP∗ [H]
:= α̃ ∀P∗ ∈ M.
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Let ã be the lower (1− α̃)-quantile of ϕ = dQ
dQ∗ , i.e.,

ã := q−ϕ (1− α̃) = inf{a |Q∗[ϕ > a] ≤ α̃}.

Let Ã =
{

dQ
dQ∗ > ã

}
.

Proposition 4.4 (Neyman-Pearson lemma). If A ∈ F is such that Q∗(A) ≤
Q∗(Ã), then Q(A) ≤ Q(Ã).

Let ψ̃ = I{ϕ>ã}. The Neyman-Pearson lemma says that if EQ∗
[ψ] ≤ EQ∗

[ψ̃]

for all ψ ∈ R, then EQ[ψ] ≤ EQ[ψ̃]. I.e., maxψ∈R EQ[ψ] = EQ[ψ̃] under the
constraint

EQ
∗
[ψ] ≤ α̃.

Thus ψ̃ = I{ϕ>ã} is the maximal solution of EQ[ψ].
So in the complete market case, i.e., M = {P∗}, by the Neyman-Pearson

lemma, we can solve the problem explicitly. The following Proposition (4.5) can
be attained by changing the expressions in terms of probability measures Q and
Q∗ into ones in terms of probability measures P and P∗.

Proposition 4.5 ([6]). Let ϕ = dP
dP∗ . When the risk measure is given by ρ(X) =

E[X] in the complete market model, the optimal randomized test ψ̃1 ∈ R is given
by

ψ̃1 = I{ϕ>ã} + γI{ϕ=ã} (4.15)

where

ã = inf
{
a
∣∣∣EP∗ [HI{ϕ>a}] ≤ α

}

and

γ =

{
α−EP∗ [HI{ϕ>ã}]
EP∗ [HI{ϕ>ã}]

if P∗[{ϕ = ã} ∩ {H > 0}] > 0,

c ∈ [0, 1] arbitrarily if P∗[{ϕ = ã} ∩ {H > 0}] = 0.

If P∗[{ϕ = ã} ∩ {H > 0}] = 0, then ψ̃1 becomes the function I{ϕ>ã}.

Proposition 4.6. For λ ∈ (0, 1], let X > 0 be a contingent claim such that

P(X > 0) ≤ λ.

Then we have

AV aRλ(−X) =
1

λ
E[X] for X ≥ 0, (4.16)

and the optimal solution ψ̃ to the problem

inf
ψ∈R0

AV aRλ(−(1− ψ)H) = AV aRλ(−(1− ψ̃)H) =
1

λ
E[(1− ψ̃)H] (4.17)

is of the form as in the equation (4.15).
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Proof. Let c = q−X(λ). Then by the Remark (4.3) the maximum in (4.12) is
attained by the measure Q0 ∈ Qλ, whose density is given by

dQ0

dP
=

1

λ
(I{−X<c} + κI{−X=c}),

κ is the same as (4.14) in which X is replaced by −X. Since P(X > 0) ≤ λ, the
upper and the lower λ-quantiles of −X are

q+−X(λ) = − inf{x ∈ R |P[X > x] ≤ λ} = 0,

q−−X(λ) = − inf{x ∈ R |P[X > x] < λ} = 0,

respectively. Since c = q−X(λ) is contained in the interval [q−−X(λ), q+−X(λ)], we
get c = 0. For −X with X ≥ 0 the density becomes

dQ0

dP
=

1

λ
(I{X>0} + κI{X=0}).

and hence we have

AV aRλ(−X) = EQ0 [X] = E
[
X · 1

λ
(I{X>0} + κI{X=0})

]
=

1

λ
E[X].

By the Proposition (4.5), ψ̃ is of the form (4.15). ¤

5. Optimal partial hedging in a complete market

In this section, we will see how to do optimal partial hedging by using the
risk measure ρ(X) = AV aRλ(X) in a complete market. Let Wt, 0 ≤ t ≤ T ,
be a Brownian motion on a probability space (Ω,F ,P). Let P∗ be a unique
equivalent martingale measure on (Ω,F ,P). Consider a generalized geometric
Brownian motion of stock price process whose differential is given by

dSt = µtSt dt+ σtSt dWt, 0 ≤ t ≤ T. (5.18)

This equation can be equivalently written as

St = S0 exp
{∫ t

0

σs dWs +

∫ t

0

(µs − 1

2
σ2
s) ds

}
.

Assume that the interest rate is zero, µt = µ(> 0), σt = σ(> 0) are constants
for simplicity. The Girsanov’s Theorem implies that the equivalent martingale
measure P∗ is given by

dP∗

dP
= exp

{
−
∫ t

0

Θt dWt − 1

2

∫ t

0

‖Θu‖2 du
}

= exp
(
− µ

σ
WT − 1

2

(µ
σ

)2

T
)
= const · S−µ/σ2

T ,

where Θt is the market price of risk, i.e, Θt =
µt

σt
[8](also see [6]). The process

W ∗ defined as

W ∗
t = Wt +

∫ t

0

Θu du = Wt +
µ

σ
t
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is a Brownian motion under P∗. Consider a European call optionH = (ST−K)+.
Then the claim H can be replicated completely with the initial capital, i.e.,
superhedging price

H0 = EP
∗
[H] = x0N(d+)−KN(d−),

where x0 = S0 and N denotes the standard normal distribution function, and

d± =
ln(x0/K)

σ
√
T

± 1

2
σ
√
T .

For the optimal partial hedging, let α < EP∗ [H], i.e., α be smaller than the
Black-Scholes price H0 = EP∗ [H].

Assume that

P(H > 0) = N
(µ
σ

√
T + d−

)
≤ λ.

Then ψ̃ = I{ST>c} is the solution to the problem (4.17) by the Proposition (4.6)
and c is determined by

α = EP
∗
[HI{ST>c}]

= S0N
( ln(S0/c)

σ
√
T

+
1

2
σ
√
T
)
−KN

( ln(S0/c)

σ
√
T

− 1

2
σ
√
T
)
.

Thus the modified claim ψ̃H = HI{ST>c} = (ST − c)+ + (c−K)I{ST>c} should
be hedged, and the price of the modified claim at time t is given by

EP
∗
[ψ̃H | Ft] = StN

( ln(St/c)

σ
√
T − t

+
1

2
σ
√
T − t

)
−KN

( ln(St/c)

σ
√
T − t

− 1

2
σ
√
T − t

)
.
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