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BOUNDARY BEHAVIOR OF LARGE SOLUTIONS FOR

QUASILINEAR ELLIPTIC EQUATIONS†

JUAN SUN AND ZUODONG YANG∗

Abstract. In this paper, our main purpose is to consider the quasilinear
elliptic equation

div(|∇u|p−2∇u) = (p− 1)f(u)

on a bounded smooth domain Ω ⊂ RN , where p > 1 , N > 1 and f is a
smooth, increasing function in [0,∞). We get some estimates of a solution
u satisfying u(x) → ∞ as d(x, ∂Ω) → 0 under different conditions on f .
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1. Introduction

In this paper, we will be concerned with the boundary behavior for solutions
to quasi-linear problem of the form

div(|∇u|p−2∇u) = (p− 1)f(u) in Ω, u(x) → ∞ as x → ∂Ω (1.1)

where Ω ⊂ RN , p > 1 is a bounded smooth domain, and let f(t) be a smooth,
increasing function in [0,∞), which satisfies f(0) = 0. A local weak solution u
of (1.1) is said to be a blow-up solution if u is continuous on Ω and u(x) → ∞
as d(x, ∂Ω) → 0.

In [1], the author considered blow-up solutions to the question

div(|∇u|p−2∇u) = g(x)f(u) for x ∈ Ω, (1.2)

and u(x) → ∞ as d(x, ∂Ω) → 0. The following growth condition on f at infinity,
first introduce by [2] and [3], is crucial in the investigation of the existence of
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blow-up solutions in this paper:
∫ ∞

1

dt

(pF (t))
1
p

< ∞, where F (t) =

∫ t

0

f(s)ds, (F − 1)

where p = 2. Under some conditions on g, it is possible to show the existence
of a non-negative blow-up solution. Meanwhile, some people also investigate
asymptotic boundary estimates of such blow-up solutions and its main result
can be listed as follows:

lim
δ(x)→0

u(x)

φ(g(x)1/pδ(x))
= 1,

where φ is the function defined as
∫ 0

φ(s)
dt

(2F (t))
1
2
= s, δ(x) denotes the distance

of x from ∂Ω.
In the papers [2,3] the condition (F−1) when p = 2 was shown to be necessary

and sufficient condition for the equation

4u = f(u) (1.3)

to admit a blow-up solution on a bounded domain Ω. The investigation in
these papers led to several papers where important contributions were made to
the question of existence, uniqueness, asymptotic boundary behavior, symmetry
and convexity of blow-up solutions. We refer to the papers [4-10] and references
therein for such results.

In [5], they considered a secondary effect in the asymptotic behavior of solu-
tions of equation (1.3), namely, the behavior of

u

φ(δ(x))
→ 1 as δ(x) → 0.

They derived estimates for this expression under different conditions on f , which
were valid for a large class of nonlinearities and extended a result of [9].

It was shown in [14] that problem

div(|∇u|m−2∇u) + q(x)u−γ = 0 x ∈ RN

has a positive entire solution if q ∈ C(R+), 0 ≤ γ < p− 1, for any

0 < ε < (N − p)(p− 1− |γ|)/(p− 1),

such that ∫ ∞

1

rp+ε−1 + [(N − p)|γ|/(p− 1)]q(r)dr < ∞,

for r ∈ (0, 1), δ < 1, q(r) = O(r−δ).
In the recent paper [12], with the aim to investigate the second order term of

the expansion of the solution u(x) of equation (1.3), the following condition on
f(t) is assumed.

2F (t)f(t)

(f(t))2
= 1 + [α+ o(1)](log t)−1, F (t) =

∫ t

0

f(τ)dτ,
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where α > 1, o(1) → 0 as t → ∞. They show that this condition implies the
following inequality:

Ct(log t)α−ε < (F (t))
1
2 < Ct(log t)α+ε,

for some C > 0, 0 < ε < α − 1. Under this assumption and some additional
condition for f it is shown that

φ(δ)[1 +
α− 1

2(2α− 1)
(N − 1)Kδ − εδ − Cεδ

2] < u(x)

< φ(δ)[1 +
α− 1

2(2α− 1)
(N − 1)Kδ + εδ + Cεδ

2],

where φ is the function defined as
∫ 0

φ(s)
dt

(2F (t))
1
2

= s, δ = δ(x) denotes the

distance of x from ∂Ω and K = K(x) is the mean curvature of the surface
{x ∈ Ω : δ(x) = constant}.

Motivated by the papers of [5] and [12], we further study the asymptotic
behavior of large solutions of (1.1), the results of the semilinear equation are
extended to the quasilinear ones. We can find the related results for p = 2 in [5,
12]. We need some conditions as follows.

(F − 2) F (t)/tp is monotone increasing for large t.

(F − 3) Let G(t) =
∫ t

0
(F (s))1−

1
p ds. There exist a, b, with 1 < a < b, such

that

aF/f ≤ G/G′ ≤ bF/f,

for large t.
(F − 3)∗ limα→1,δ→0 supφ

′(αδ)/φ′(δ) < ∞
(F − 4) Ct(log t)α−ε < (F (t))

1
p < Ct(log t)α+ε, C > 0, 0 < ε < α− 1, α > 1.

2. An estimate in strip domains.

Let us first consider the 1-dimensional problem

(|φ′|p−2φ′)′ = (p− 1)f(φ) with lim
x→0

φ(x) = ∞.

All solutions are of the form φc = ψc
−1, where ψc(t) =

∫∞
t

ds

(pF (s)+c)
1
p
.

By a modification of the method given in [5], we obtain the following Lemma.

Lemma 2.1. Suppose that f(t) is a smooth, increasing in [0,∞), satisfy-
ing f(0) = 0 as well as condition (F − 1), for any real numbers c1 and c2,
limx→0(φc1(x)− φc2(x)) = 0.

Proof. Let c1 > c2. Then φc1(x) < φc2(x). Fix x0 in the domains of definition
of φci , i=1,2. Let it be so close to 0 that φci > 0. Define L = φc2(x0)− φc1(x0)
and z = φc2(x + ε0) − L, where ε0 > 0 is any small positive number such that
φc2(x0 + ε0) > 0. It satisfies

(|z′|p−2z′)′ = (p− 1)f(φc2(x+ ε0)) ≥ (p− 1)f(z)
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for x < x0, z(0) < ∞ and z(x0) < φc1(x0). By (F − 1) the difference z − φc1

cannot have a positive maximum in (0, x0). We thus have z(x) < φc1(x). Since
this inequality holds for any ε < ε0 we conclude that

φc1(x) ≤ φc2(x) ≤ φc1(x) + L in (0, x0). (2.1)

Let c be any positive number. By definition

−φc
′ = p

√
pF (φc) + c = p

√
pF (φc) p

√
1 +

c

pF (φc)
,

whence
∫ ∞

φc(x)

ds

(pF (s))
1
p

=

∫ x

0

p

√
1 +

c

pF (φc)
dξ = x+ (1 + o(1))

c

p2

∫ x

0

dξ

F (φc)

as x → 0. Hence,

φc(x) = φ(x+ (1 + o(1))
c

p2

∫ x

0

dξ

F (φc)
),

By mean value theorem, we have

φc(x) = φ(x) + φ′(x̃)(1 + o(1))
c

p2

∫ x

0

dξ

F (φc)
, (2.2)

where

x ≤ x̃ ≤ x+ (1 + o(1))(c/p2)

∫ x

0

dξ

F (φc)
.

Since φ′ < 0 and (|φ′|p−2φ′)′ ≥ 0,

(|φ′|p−2φ′)′ = (−|φ′|p−2(−φ′))′ = (−| − φ′|p−1)′ ≥ 0

which implies |φ′(x)|p−1 is decreasing, |φ′(x)| > |φ′(x̃)|. This inequality and (2.2)
imply that

0 ≤ |φ(x)− φc(x)| ≤ |φ′(x)|(1 + o(1))
c

p2

∫ x

0

dξ

F (φc)
= η(x). (2.3)

In view of (2.1) there exists a constant L such that φc ≥ φ− L. Hence
∫ x

0

dξ

F (φc)
≤

∫ x

0

dξ

F (φ− L)
=

∫ ∞

φ(x)

ds

F (s− L)(pF (s))1/p
.

Consequently,

η(x) ≤ (1 + o(1))(c/p2)(pF (φ))1/p
∫ ∞

φ

ds

F (s− L)(pF (s))1/p
≤ const

∫ ∞

φ

ds

F (s− L)
.

The assertion now follows from (2.3) and (F − 2).
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3. Estimates for radially symmetric solutions.

In this section we consider radially symmetric solutions in the annuli

A(ρ,R) = {x : ρ < |x| < R}.
Put

Γ(t) :=
1

F (t)

∫ t

0

(pF (s))1−
1
p ds. (3.1)

Let us now introduce the following notation. Assume that f satisfies the Keller-
Osserman condition (F-1). Then it is known ( see Lemma 2.1 of [13]) that

lim
t→∞

(F (t))(p−1)/p

f(t)
= 0. (3.2)

Hence, by the Bernoulli-1’Hospital rule

lim
t→∞

Γ(t) = 0. (3.3)

By a modification of the method given in [5], we obtain the following Lemma.

Lemma 3.1. Suppose that f(t) is a smooth, increasing in [0,∞), satisfying
f(0) = 0 as well as condition (F − 1).

(i) Let v(r) be a radial solution of (1.1) in A(ρ,R) such that limr→R v(r) =

∞.Then

ψ(v(r)) = R− r − N − 1

(p− 1)pR
(1 + o(1))

∫ R

r

Γ(v(s))ds as r → R. (3.4)

(ii) Let w(r) be a radial solution of (1.1) in A(ρ,R) such that limr→ρ w(r) = ∞.

Then

ψ(w(r)) = r − ρ− N − 1

(p− 1)pρ
(1 + o(1))

∫ r

ρ

Γ(w(s))ds as r → ρ. (3.5)

Proof. We first establish the result for the solution v. For r ∈ (ρ,R) it satisfies
the equation

(|v′|p−2v′)′ +
N − 1

r
|v′|p−2v′ = (p− 1)f(v), lim

r→R
v(r) = ∞.

Multiplication by v′ and integration yield

|v′(r)|p − |v′(r0)|p + p

p− 1
(N − 1)

∫ r

r0

|v′|p
s

ds = p[F (v(r))− F (v(r0))]

or equivalently

|v′(r)|p + p

p− 1
(N − 1)I = pF (v)(1 +

g(v(r0))

F (v)
), (3.6)

where

I :=

∫ r

r0

|v′|p
s

ds and g(v(r0)) =
|v′(r0)|p

p
− F (v(r0)).
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For r sufficiently close to R, v′(r) ≥ 0. Otherwise in every left neighborhood of
R there would exist an interval (r1, r2) such that v′ is positive at its end points
but negative at some point inside. Since v blows up at R this contradicts the
equation. Accordingly we choose r̄ sufficiently close to R so that v is monotone
increasing in (r̄, R) and assume that r̄ ≤ r0 ≤ R. Then

|v′(r)|p ≤ pF (v)(1 +
g(v(r0))

F (v(r0))
),

and consequently

(|v′|p−2v′)′ = (p− 1)f(v)− N − 1

r
|v′|p−2v′ > (p− 1)f(v)− c′(F (v))(p−1)/p

for some constant c′. This inequality and (3.2) imply that |v′| is monotone
increasing in a left neighborhood of R. Hence

I ≤ |v′|p(r) log r

r0
= ε|v′|p(r) for r ∈ (r0, R).

By choosing r0 sufficiently close to R, ε can be made arbitrarily small. Inserting
this estimate into (3.6), we get

|v′|p = pF (v)(1 + o(1)) as r → R. (3.7)

Hence,

I = R−1(1 + o(1))

∫ r

r0

|v′|pds = R−1(1 + o(1))

∫ r

r0

(pF (v))(p−1)/pv′ds

= R−1(1 + o(1))

∫ v(r)

v(r0)

(pF (v))(p−1)/pdv, as r0, r → R,

which implies that

I/F (v) = (1 + o(1))
Γ(v(r))

R
, as r → R.

Inserting this expression into (3.6) we obtain

v′(r) = (pF (v))
1
p (1− (N − 1)Γ(v)

(p− 1)R
(1 + o(1)))

1
p .

Hence, by (3.3),

v′(r) = (pF (v))
1
p (1− (N − 1)Γ(v)

(p− 1)pR
(1 + o(1))) as r → R.

Dividing this expression by (pF (v))1/p and integrating, we get

ψ(v(r0))− ψ(v(r)) = r − r0 − (1 + o(1))
N − 1

(p− 1)pR

∫ r

r0

Γ(v(s))ds.

Now let r → R , we obtain (3.4).
The proof of the second assertion is very similar. We omit the details.



Boundary behavior of large solutions for quasilinear elliptic equations 975

Put

ω =
N − 1

(p− 1)pR
(1 + o(1))

∫ R

r

Γ(v(s))ds,

ω̃ =
N − 1

(p− 1)pρ
(1 + o(1))

∫ r

ρ

Γ(w(s))ds. (3.8)

Then, by Lemma 3.1

v(r) = φ(δ − ω) = φ(δ)− φ′(δ′)ω, where δ = R− r ≥ δ′ ≥ δ − ω,

w(r) = φ(δ + ω̃) = φ(δ) + φ′(δ̃′)ω̃, where δ = r − ρ ≤ δ̃′ ≤ δ + ω̃. (3.9)

This will be the key for the estimates concerning the behavior of the large
radial solutions.

By a modification of the method given in [5, 12], we obtain the following main
results.

Theorem 3.2. Let v and w be solutions of problem (1.1) in A(ρ,R), as in
the previous lemmas, and assume that f(t) is smooth, increasing in [0,∞) and
satisfies conditions (F − 1) and (F − 2). Then the following statements hold.

(i) Put δ = R−r and let o(1) denote a quantity which tends to zero as δ → 0.
Then

φ(δ) ≤ v(r) ≤ φ(δ)[1 + (1 + o(1))
N − 1

(p− 1)R
δ]. (3.10)

(ii) Put δ = r−ρ and let o(1) denote a quantity which tends to zero as δ → 0.
If (F − 3) holds, then there exists a constant c1 such that

φ(δ) ≥ w(r) ≥ φ(δ) + c1
1 + o(1)

(p− 1)ρ
δ2φ′(δ). (3.11)

Note that 0 < −δφ′(δ) ≤ pφ(δ/p). Alternatively, if (F − 3)∗ holds, then there
exists a constant c1

∗ such that

φ(δ) ≥ w(r) ≥ φ(δ)− c1
∗ 1 + o(1)

(p− 1)ρ
δφ(δ). (3.12)

(iii) If f satisfies condition (F − 4), then for some σ ∈ (0, 1) and a suitable
C(p) we have

v(r) < φ(R− r)[1 + C(p)(R− r)
1−σ

] for r near R (3.13)

and

w(r) > φ(r − ρ)[1− C(p)(r − ρ)
1−σ

] for r near ρ. (3.14)

Proof. (i) By the definition of Γ(s) and the monotonicity of F

Γ(v) ≤ p1−
1
p v

(F (v))1/p
. (3.15)
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Let r0 be sufficiently close to R so that v(r) is increasing for r > r0. Then by
(F − 2) and (3.15) ∫ R

r

Γ(v(s))ds ≤ p1−
1
p v(r)

(F (v(r)))1/p
δ. (3.16)

By (3.9) and the fact that φ(δ) is decreasing, we have

−φ′(δ′) = (pF (φ(δ′)))
1
p ≤ (pF (φ(δ − ω)))

1
p = (pF (v(r)))

1
p .

Inserting this inequality in the first part of (3.9) and using (3.8) and (3.16) we
obtain

v(r) ≤ φ(δ) + (pF (v(r)))
1
pω ≤ φ(δ) +

N − 1

(p− 1)R
(1 + o(1))v(r)δ. (3.17)

The left inequality in (i) is an immediate consequence of (3.9). To verify the
right inequality in (i) we observe that, by (3.17),

v(r)/φ(δ) ≤ (1− N − 1

(p− 1)R
(1 + o(1))δ)−1.

Hence

v(r)/φ(δ) ≤ 1 + (1 + o(1))
N − 1

(p− 1)R
δ.

This proves (i).

(ii) We turn to the proof of the assertion assuming that (F − 3)∗ holds. Since
w̃ → 0 as δ → 0, it follows that

lim
δ→0

sup
φ′(δ̃′)

φ′(δ + ω̃)
≤ c < ∞.

Consequently, by the second part of (3.9),

w(r)− φ(δ) ≥ cω̃φ′(δ + ω̃) = −cω̃(pF (w))1/p.

Further,by (F − 2),(3.17) and (3.10),

ω̃(pF (w))1/p ≤ N − 1

(p− 1)ρ
(1 + o(1))w(r)δ.

The last two inequalities and (3.9) imply (3.14).
Next we prove the assertion assuming that (F − 3) holds. Let γ := Γ ◦ w.

Then, by (3.9) and (3.1)

γ′(r) = Γ′(w(r))w′(r) = −Γ′(w(r))(pF (w(r)))1/p(1 + o(1)) = p(1 + o(1))(
fG

F
2− 1

p

− 1),

where o(1) is a quantity which tends to zero as r → ρ. Hence, by (F − 3),

p(a− 1) ≤ γ′(r)
1 + o(1)

≤ p(b− 1). (3.18)

Further, by (3.3), γ(r) → 0 as r → ρ. Therefore, (3.18) implies that

Γ(w(r)) ≤ (1 + o(1))p(b− 1)(r − ρ). (3.19)
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Hence, by (3.8),

ω̃(r) ≤ c1
1 + o(1)

(p− 1)ρ
δ2, where c1 = (b− 1)(N − 1). (3.20)

Finally, by (3.9) and (3.20),

φ(δ) ≥ w(r) ≥ φ(δ) + φ′(δ) ˜ω(r) ≥ φ(δ) + c1
1 + o(1)

(p− 1)ρ
δ2φ′(δ),

which proves (3.11).

(iii) According to Lemma 3.1, since φ is the inverse function of ψ, by (3.4) we
get

v(r) = φ(R− r)− φ′(ω)
N − 1

(p− 1)pR
(1 + o(1))

∫ R

r

Γ(v(s))ds, (3.21)

with

R− r > ω > R− r − N − 1

(p− 1)pR
(1 + o(1))

∫ R

r

Γ(v(s))ds. (3.22)

Since F is increasing and φ is decreasing, by (3.22) and (3.4) we find

−φ′(ω) = (pF (φ(ω)))1/p ≤ (pF (v))1/p.

Insertion of the latter estimate into (3.21) yields

v(r) < φ(R− r) + C1
(pF (v))1/p

p(p− 1)

∫ R

r

Γ(v(s))ds. (3.23)

We denote by Ci suitable positive constants.
By (3.1) and the left-hand side of (F − 4) we get

Γ(t) ≤ pt

(pF )1/p
< C2

p1−
1
p

(log t)α−ε
(3.24)

By (3.23), using the right-hand side of (F − 4) and (3.24) we find

v(r) < φ(R− r) +
C3

p− 1
v(log(v))α+ε

∫ R

r

1

(log(v))α−ε
ds,

and

v(r) < φ(R− r) +
C4

p− 1
v(r)(log(v(r)))2ε(R− r) for r near R. (3.25)

On the other side by (3.4) we find, for r near to R,

ψ(v(r)) > (1− 1

p(p− 1)
)(R− r),

whence

v(r) < φ[(1− 1

p(p− 1)
)(R− r)]. (3.26)
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By (1.2) and the left-hand side of (F − 4) we find

log φ(s) < C5p
1/p(

1

s
)

1
α−1−ε . (3.27)

Therefore, (3.26) implies

log(v(r)) < C6p
1/p(

p(p− 1)

(p2 − p− 1)(R− r)
)

1
α−1−ε .

Insertion of the latter estimate into (3.24) yields

v(r) < φ(R− r) + C(p)(R− r)1−σv(r),

where C(p) = C6
p

1
p

p−1 (
p2−p

p2−p−1 )
2ε

α−1−ε and σ = 2ε
α−1−ε , from which we find

v(r)[1− C(p)(R− r)1−σ] ≤ φ(R− r).

Let us prove (3.14). By (3.5) we get

v(r) = φ(r − ρ) + φ′(ω̃)
N − 1

(p− 1)pρ
(1 + o(1))

∫ r

ρ

Γ(v(s))ds, (3.28)

with

r − ρ < ω̃ < r − ρ+
N − 1

(p− 1)pρ
(1 + o(1))

∫ r

ρ

Γ(v(s))ds.

Since φ′(s) is increasing, we have φ′(ω̃) > φ′(r − ρ), and (3.28) implies

v(r) > φ(r − ρ) +
C1

p(p− 1)
φ′(r − ρ)

∫ r

ρ

Γ(v(s))ds.

By using (3.24), the last estimate yields

v(r) > φ(r−ρ)− C2

p− 1
(F (φ(r−ρ)))1/p

1

(log v)α−ε
(r−ρ) for r near ρ. (3.29)

On the other side by (3.5) we find, for r near ρ

ψ(v(r)) < 2(r − ρ),

whence

v(r) > φ(2(r − ρ)). (3.30)

By (1.2) and the right-hand side of (F − 4) we find

1

log φ(s)
< C3p

1/ps
1

α−1+ε . (3.31)

By the latter estimate and (3.30) we find

1

log v(r)
< C3p

1/p(2(r − ρ))
1

α−1+ε . (3.32)

Furthermore, using again the right-hand side of (F − 4) and (3.27) we have

(F (φ(r − ρ)))1/p < C4φ(r − ρ)(log(φ(r − ρ)))α+ε < C5φ(r − ρ)(p
1
p )α+ε(

1

r − ρ
)

α+ε
α−1−ε .
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Inserting the latter estimate and (3.32) into (3.29) we find

v(r) > φ(r − ρ)− C6φ(r − ρ)(p
1
p )2α(

1

r − ρ
)

α+ε
α−1−ε (r − ρ)

α−ε
α−1+ε (r − ρ).

Inequality (3.14) follows with σ = 2ε(2α−1)
(α−1)2−ε2 and a suitable M . Since

2ε

α− 1− ε
<

2ε(2α− 1)

(α− 1)2 − ε2
,

(3.13) and (3.14) hold both with σ = 2ε(2α−1)
(α−1)2−ε2 . The Lemma is proved.

4. General domains.

In this section we consider bounded domains Ω ⊂ RN with a smooth bound-
ary ∂Ω. For our purposes, the boundary ∂Ω is smooth if it is of class C4.
Furthermore, if Ω is smooth, then ∂Ω satisfies a uniform interior and exterior
condition. Using Theorem 3 we derive an estimate for large solutions in arbitrary
smooth domains. The proof employs a weak comparison method.

By a modification of the method given in [5, 12], we obtain the following
results.

Theorem 4.1. Let Ω ⊂ RN , N ≥ 2 be a bounded domain with a smooth
boundary ∂Ω, let f(t) be smooth, increasing in [0,∞) with f(0) = 0, satisfying
(F − 1) and (F − 2). If u(x) is a solution to problem (1.1), then the following
statements hold.

(i) If f satisfies condition (F − 3)∗, there exists a constant c∗ such that every
u of problem (1.1) satisfies

| u(x)

φ(δ(x))
− 1| ≤ c∗

p− 1
δ. (4.1)

(ii) If f satisfies condition (F − 3), there exists a constant c such that

c

p− 1

δ2φ′(δ)
φ(δ)

≤ u(x)

φ(δ(x))
− 1 ≤ cδ. (4.2)

(iii) If f satisfies condition (F − 4), then for some σ ∈ (0, 1) we have

φ(δ)[1− C(p)δ1−σ] < u(x) < φ(δ)[1 + C(p)δ1−σ] for x near ∂Ω, (4.3)

where φ is the function defined as
∫ 0

φ(s)
dt

(2F (t))
1
2

= s, δ = δ(x) denotes the

distance from x to ∂Ω and C(p) is a suitable positive constant related with p.

Proof. We can make use of Theorem 3.2. If x0 ∈ ∂Ω, let A(R1, R) be a small
annulus contained in Ω and such that Ω̄

⋂
Ā((R1, R)) = x0. If v(x) > 0 is a

radial solution of problem (1.1) in Ā((R1, R)), by the comparison principle for
elliptic equations we have

u(x) ≤ v(x).
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Now consider the annulus A(ρ,R2), whose inner boundary Γρ is contained in
RN\Ω, Γρ

⋂
∂Ω = {x0}, and moreover R2 > diam Ω. Of course, Ω̄ ⊂ Ā(ρ,R2).

If z(x) is a positive radial solution of problem (1.1) in Ā(ρ,R2), then by a
comparison argument we have

z(x) ≤ u(x).

Then according to Theorem 3.2, the theorem is proved.
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