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A NEWTON-IMPLICIT ITERATIVE METHOD FOR

NONLINEAR INVERSE PROBLEMS†
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Abstract. A regularized Newton method for nonlinear ill-posed problems
is considered. In each Newton step an implicit iterative method with an
appropriate stopping rule is proposed and analyzed. Under certain assump-
tions on the nonlinear operator, the convergence of the algorithm is proved
and the algorithm is stable if the discrepancy principle is used to terminate
the outer iteration. Numerical experiment shows the effectiveness of the
method.
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1. Introduction

In many applied science and technology fields, such as earthquake prospect-
ing[14], CT technology[11], groundwater hydrology[3], vane design[9], etc. var-
ious inverse problems are proposed. Generally they can be formulated as the
following nonlinear ill-posed operator equation

F (a) = u (1.1)

where F : D(F ) ⊂ X → Y is a nonlinear operator between Hilbert space X and
Y. Inverse problems are generally nonlinear and ill-posed in the sense that even
when a is uniquely determined by the right-hand side u the mapping u 7→ a
lacks continuity. This is a severe numerical problem when the given right-hand
side is noisy data uδ. Such problems need to be regularized[1]. The perturbed
right-hand side uδ generally satisfies

‖uδ − u‖ ≤ δ (1.2)

where δ ≥ 0 is a known error level.
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When the problem (1.1) is well-posed, Newton-type methods are one effec-
tive option for solving (1.1) and they have been applied with success in various
applications. However, only few rigorous theoretical analysis of Newton-type
methods for ill-posed problems can be found in the literature[2,4,7,10,13].

The present paper develops a Newton-type method for nonlinear ill-posed
equation (1.1). The basic idea is the resolution of the linearized equation, which
generally is also ill-posed, by an implicit iterative method with invariable control
parameters[5,6]. A posteriori stopping rules for the inner and the outer iterations
are suggested that make the algorithm a regularizing method.

This paper is organized as follows. In section 2, the algorithm for solving the
nonlinear ill-posed problem (1.1) is presented. In section 3, the monotonicity
result concerning the iteration error is proved. In section 4, the convergence
results of the algorithm for both cases δ = 0 and δ > 0 are derived. Section 5
gives some numerical experiment results.

2. Algorithm

Newton-type methods for solving (1.1) are based on the Taylor expansion of
the operator F . Assuming that a† is a solution of the nonlinear equation (1.1)
and an is some approximation of a†, then

F (a†) = F (an) + F ′(an)(a† − an) +R(a†, an) (2.1)

where R(a†, an) is the Taylor remainder. Adding the noise term uδ to (2.1) and
hence a† − an satisfies

F ′(an)(a† − an) = uδ − F (an) + u− uδ −R(a†, an) (2.2)

The right-hand side of (2.2) splits into two parts:

ỹn = uδ − F (an), z̃n = u− uδ −R(a†, an)

the first part is computable, whereas the second part is not. In other words, the
ideal update x := a† − an solves the linear equation

Tnx = yn (2.3)

with Tn = F ′(an) and yn as the right-hand side in (2.2). The corresponding
Newton iterative equation is

Tnx = ỹn (2.4)

which can be regarded as the perturbed equation of the exact equation (2.3).
Here the perturbed right hand ỹn and the exact right hand yn satisfy

‖ỹn − yn‖ ≤ δ + ‖R(a†, an)‖
In general equation (2.4) is still ill-posed. There is well-developed theory on

how to regularize linear ill-posed problems with inexact data when the error
bound ‖ỹn − yn‖ is known, cf.[1], however, the difficulty in the present situation
is that ‖R(a†, an)‖ can hardly be estimated accurately, so is ‖ỹn−yn‖. Thus the
most of regularization parameter choice strategies will not be applicable. To get
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rid of the difficulty, Hanke proposed a parameter choice strategy for Tikhonov
and CG methods for equation (2.4)[3,4]. Since implicit iterative method is a
very efficient approach for linear ill-posed equations [5,6], we consider in this
paper the possibility of application of the implicit iterative method for equation
(2.4) combining with Hanke’s iterative stopping strategy.

The implicit iterative method for equation (2.4) is as follows

(T ∗
nTn + αnI)xk = T ∗

n ỹn + αnxk−1, x0 = 0, k = 1, 2, · · · (2.5)

where αn is a positive constant which is used to control the rates of the conver-
gence. Assume that they have positive lower and upper bound, i.e.

0 < α ≤ αn ≤ α (2.6)

Iteration (2.5) can be rewritten as

(T ∗
nTn + αnI)(xk − xk−1) = T ∗

n(ỹn − Tnxk−1), x0 = 0, k = 1, 2, · · · (2.7)

Let rk = ỹn − Tnxk, and (2.7) becomes xk = xk−1 + (T ∗
nTn + αnI)

−1T ∗
nrk−1.

Repeat use of this formula gives

rk = αk
n(T

∗
nTn + αnI)

−kỹn (2.8)

xk = xk−1 + T ∗
nwk−1 (2.9)

xk = T ∗
n

k−1∑

i=0

wi (2.10)

where wi = αi
n4−(i+1)ỹn = 4−1ri and 4 = T ∗

nTn + αnI. In the following, we
give the Newton-Implicit iterative algorithm for solving equation (1.1).
Algorithm 1.

step 1. Given τ > 0, ρ > 0. Choose the initial guess a0, n = 0.
step 2. Compute ỹn = uδ − F (an), Tn = F ′(an).
step 3. Let x0 = 0, k = 1. Given αn.
step 4. Compute xk = xk−1 + (T ∗

nTn + αnI)
−1T ∗

n(ỹn − Tnxk−1).
step 5. If ‖ỹn − Tnxk‖ ≤ ρ‖ỹn‖, then do step 6, else k = k + 1 and do step 4.
step 6. Compute an+1 = an + xk.
step 7. If ‖uδ − F (an)‖ ≤ τδ, then stop, else n = n+ 1 and turn to step 2.

In the algorithm, the reason why we let x0 = 0 can refer to [5]. Algorithm 1
requires an initial estimate a0 of a†, and two tolerance parameters ρ and τ in
the stopping rules of the inner and the outer iterations, respectively.

3. Monotonicity

In order to prove the convergence of Algorithm 1, we need to prove the mono-
tonicity of the iteration errors. Some assumptions which are very common for
nonlinear ill-posed problems are proposed[3,4].

(i) F ′(·) is locally bounded and denote

M = sup{‖F ′(a)‖, a ∈ B(a†, r)} (3.1)
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where B(a†, r) is a ball around a† with radius r > 0.
(ii) For a certain ball B ⊂ D(F ) around the exact solution a† of (1.1), and

some C > 0,

‖F (ã)− F (a)− F ′(a)(ã− a)‖ ≤ C‖ã− a‖‖F (ã)− F (a)‖ (3.2)

for all ã, a ∈ B.
For the sake of convenience, let ỹ = ỹn, T = Tn, α = αn. In order to prove the

convergence properties of Algorithm 1, first we need to prove the monotonicity
of the iteration errors.

Lemma 1. Let γ ≥ 2, k∗ ∈ N, x ∈ X satisfies ‖ỹ − Tx‖ ≤ ε and assumption
(3.1) holds. If

‖ỹ − Txk‖2 + ‖ỹ − Txk+1‖2 > γε(α+M2)‖wk‖, k = 0, 1, · · · , k∗ − 1 (3.3)

then ‖x− xk‖ is strictly monotonically decreasing for k = 0, 1, · · · , k∗ and

|x‖2 − ‖x− xk∗‖2 > (γ − 2)ε

k∗−1∑

k=0

‖wk‖ (3.4)

Proof. By (2.9),

‖x− xk+1‖2 = ‖x− xk − T ∗wk‖2
= ‖x− xk‖2 − 〈2x− 2xk − T ∗wk, T

∗wk〉
= ‖x− xk‖2 − 〈Tx− Txk, wk〉 − 〈Tx− Txk+1, wk〉
= ‖x− xk‖2 − 〈ỹ − Txk, wk〉 − 〈ỹ − Txk+1, wk〉+ 2〈ỹ − Tx,wk〉

The given assumptions and the estimate ‖4−1‖ ≥ 1

α+M2
yield

‖x− xk‖2 − ‖x− xk+1‖2 = 〈ỹ − Txk, wk〉+ 〈ỹ − Txk+1, wk〉 − 2〈ỹ − Tx,wk〉
= 〈rk, wk〉+ 〈rk+1, wk〉 − 2〈ỹ − Tx,wk〉

≥ 1

α+M2
[〈rk, rk〉+ 〈rk+1, rk+1〉]− 2〈ỹ − Tx,wk〉

> γε‖wk‖ − 2ε‖wk‖ = (γ − 2)ε‖wk‖
(3.5)

for all k = 0, 1, · · · , k∗ − 1. Since γ ≥ 2, the right-hand side of (3.5) is nonneg-
ative which shows that the sequence {‖x − xk‖} is strictly decreasing for k in
the given range. Furthermore, since x0 = 0, the second assertion of the lemma
follows by taking sum of (3.5) from k = 0 to k∗ − 1. ¤

Lemma 2. Let γ ≥ 2, k∗ ∈ N, x ∈ X satisfies ‖ỹ−Tx‖ ≤ ε and the assumption
(3.1) holds and ‖ỹ‖ 6= 0, then the inequalities

‖ỹ − Txk‖2 >
1

α
γε(α+M2)‖ỹ‖, k = 1, 2, · · · , k∗ (3.6)

imply (3.3). Furthermore, there are only finitely many k for which (3.6) can
hold.
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Proof. Since ‖wk‖ = ‖αk4−(k+1)ỹ‖ ≤ 1

α
‖ỹ‖, and by (3.6) and the assumptions

of the lemma, we have

‖ỹ − Txk‖2 + ‖ỹ − Txk+1‖2 >
2

α
γε(α+M2)‖ỹ‖ ≥ 2γε(α+M2)‖wk‖

so that (3.6) imply (3.3). Since ‖ỹ−Txk‖ → 0 as k → ∞, cf.[5], therefore, (3.6)
can only hold for finitely many indices k. ¤

In the following, we denote Tn = F ′(an), ỹn = uδ − F (an) and αn again.
It will be assumed that equation (1.1) has a solution a† ∈ B. The following
theorem gives the monotonicity result.

Theorem 3. Let γ > 2, 0 < ρ < 1, ‖ỹn‖ 6= 0. Assume (3.1) and

‖ỹn − yn‖ = ‖uδ − F (an)− F ′(an)(a† − an)‖ ≤ αnρ
2

γ(αn +M2)
‖uδ − F (an)‖(3.7)

hold. The inner iteration stops as the inequality

‖ỹn − Tnxk‖ = ‖uδ − F (an)− F ′(an)(an+1 − an)‖ ≤ ρ‖uδ − F (an)‖ (3.8)

occurs. Then the inner iteration terminates after kn < ∞ steps, and

an+1 = an + xkn = an + F ′(an)∗vn

with some vn ∈ Y. Moreover, the following inequalities hold

‖a† − an‖2 − ‖a† − an+1‖2 >
(γ − 2)αnρ

2

γ(αn +M2)
‖ỹn‖‖vn‖ (3.9)

‖a† − an‖2 − ‖a† − an+1‖2 >
(γ − 2)αnρ

2

γ(αn +M2)2
‖ỹn‖2 (3.10)

Proof. By (2.2), we know x = a† − an is a solution of equation (2.3). By (3.7),

‖ỹn − Tnx‖ = ‖ỹn − yn‖ ≤ αnρ
2

γ(αn +M2)
‖ỹn‖

Hence, let

ε =
αnρ

2

γ(αn +M2)
‖ỹn‖

Then x satisfies ‖ỹn − Tnx‖ ≤ ε. Substituting γε =
αnρ

2

αn +M2
‖ỹn‖ into (3.6), it

follows from Lemma 2 that the stopping rule (3.8) determines a finite stopping
index kn for the inner iteration and that (3.3) is fulfilled with k∗ = kn. In other
words (3.4) is fulfilled with k∗ = kn.
Consider the updates of an in Algorithm 1. It follows that

an+1 = an + xkn = an + T ∗
n

kn−1∑

i=0

wi = an + T ∗
nvn with vn =

kn−1∑

i=0

wi (3.11)
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Since x = a†−an and x−xkn = a†−an+1, Lemma 1 asserts that ‖a†−an+1‖ <
‖a† − an‖ and that

‖a† − an‖2 − ‖a† − an+1‖2 > (γ − 2)ε‖vn‖ =
(γ − 2)αnρ

2

γ(αn +M2)
‖ỹn‖‖vn‖

which asserts (3.9). Since vn =

kn−1∑

i=0

αi
n4−(i+1)ỹn = gαn,kn

(T ∗
nTn)ỹn, where

gαn,kn(λ) =

kn−1∑

i=0

αi
n(λ+ αn)

−(i+1) =
1

λ
[1− αkn

n (λ+ αn)
−kn ]

and

‖g−1
αn,kn

(T ∗
nTn)‖ ≤ sup

0≤λ≤M2

1

gαn,kn
(λ)

≤ sup
0≤λ≤M2

1

gαn,1(λ)
= αn +M2

yields

‖vn‖ ≥ 1

αn +M2
‖ỹn‖ (3.12)

(3.9) and (3.12) yield (3.10). The conclusion of the theorem hold. ¤

It is easy to see that the same inequalities (3.9), (3.10) would hold if the inner
iteration before the stopping rule (3.8) is met. This is important for practical
purposes because usually the number of inner iteration is constrained by some
maximum number.

4. Convergence Analysis

Firstly consider the convergence of Algorithm 1 for exact equation (1.1).

Theorem 4. Assume uδ = u = F (a†) for some a† ∈ D(F ), 0 < ρ < 1, and
assume F ′(·) is locally bounded with (3.1) and that F satisfies (3.2) for some

C > 0 in a ball B ∈ D(F) around a†. If a0 ∈ B and ‖a† − a0‖ <
αρ2

2C(α+M2)
,

where α satisfies (2.6), then the iterates {an} of Algorithm 1 converge to a
solution of (1.1) as n → ∞.

Proof. Define γ =
αρ2

C(α+M2)‖a† − a0‖ which is greater than 2 by assumption.

Therefore (3.2) with ã = a†, a = a0 implies (3.7) and hence

‖a† − an+1‖ < ‖a† − an‖ (4.1)

for n = 0 by virtue of Theorem 3.3. We assume this inequality is true for
n ≤ l, and will prove the inequality (4.1) remains true for n = l + 1. Again

define γ =
αρ2

C(α+M2)‖a† − al+1‖ which is greater than 2 by the assumption of

induction, and hence (3.2) with ã = a†, a = al+1 implies (3.7) and (4.1) holds
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for n = l + 1. Thus we prove that the sequence {‖a† − an‖} is monotonously
decreasing during the entire iteration by induction.

It will be shown that the iteration errors en = a†−an, n ∈ N, form a Cauchy
sequence. Given m, n ∈ N with m > n, let l ∈ {n, n + 1, · · · ,m} be chosen in
such a way that

‖u− F (al)‖ ≤ ‖u− F (ai)‖, i = n, n+ 1, · · · ,m (4.2)

Consider now

‖el − en‖2 = ‖en‖2 − ‖el‖2 + 2〈el − en, el〉 (4.3)

From (3.11), it follows that

|〈el − en, el〉| = |〈
l−1∑

i=n

F ′(ai)∗vi, el〉| ≤
l−1∑

i=n

‖vi‖‖F ′(ai)el‖ (4.4)

The last factor ‖F ′(ai)el‖ can be estimated by using (3.2) as follows

‖F ′(ai)el‖ = ‖F ′(ai)ei − F ′(ai)(al − ai)‖
≤ ‖u− F (ai)− F ′(ai)ei‖+ ‖F (al)− F (ai)− F ′(ai)(al − ai)‖+ ‖u− F (al)‖
≤ C‖a† − ai‖‖u− F (ai)‖+ C‖al − ai‖‖F (al)− F (ai)‖+ ‖u− F (al)‖

By the monotonicity of ‖a† − an‖, ‖a†−a0‖ <
αρ2

2C(α+M2)
and (4.2), we have

‖F ′(ai)el‖ ≤ αρ2

2(α+M2)
‖u− F (ai)‖+ αρ2

α+M2
‖F (al)− F (ai)‖+ ‖u− F (al)‖

≤ 3αρ2

2(α+M2)
‖u− F (ai)‖+ (

αρ2

α+M2
+ 1)‖u− F (al)‖

≤ (
5αρ2

2(α+M2)
+ 1)‖u− F (ai)‖

Thus (4.4) and (3.9) imply that

|〈el − en, el〉| ≤ (
5αρ2

2(α+M2)
+ 1)

l−1∑

i=n

‖vi‖‖u− F (ai)‖

<
γ(α+M2)

(γ − 2)αρ2
(

5αρ2

2(α+M2)
+ 1)(‖a† − an‖2 − ‖a† − al‖2)

which together with (4.3) yields

‖el − en‖2 < c(‖a† − an‖2 − ‖a† − al‖2)

where c =
γ(α+M2)

(γ − 2)αρ2
(

5αρ2

2(α+M2)
+ 1) + 1 does not depend on l, n, m. In the

same way one obtains

‖em − el‖2 < c(‖a† − al‖2 − ‖a† − am‖2)
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so that

‖am − an‖2 = ‖em − en‖2 ≤ 2‖em − el‖2 + 2‖el − en‖2 < 2c(‖a† − an‖2 − ‖a† − am‖2)
The right-hand side tends to zero for n, m → ∞ because of the monotonicity
of the iteration error, and hence {an} is a Cauchy sequence.

Denote the limit of an by a. From (3.10), by summation that

∞∑
n=0

‖u− F (an)‖2

converges, and therefore F (an) → u as n → ∞. Thus, it has been shown that a
is a solution of (1.1). ¤

In practice, only the perturbed right-hand side uδ with (1.2) will be known.
Hence we need to discuss the convergence of Algorithm 1 with inexact right-hand
side. To emphasize this point the corresponding iterates will be denoted by aδn
further on. In case of perturbed data it is another key point to stop the outer
iteration appropriately early to prevent divergence. Algorithm 1 terminates the
outer loop as soon as the residual norm ‖uδ −F (aδn)‖ is of the order of the noise
level δ: more precisely, if τ is a fixed positive number, then the stopping index
n(δ) is the smallest iteration index n ∈ N for which

‖uδ − F (aδn)‖ ≤ τδ (4.5)

The following result shows that this stopping rule is well defined and provides a
stable approximation of a solution of F (a) = u.

Theorem 5. Let 0 < ρ < 1, and
αρ2τ

α+M2
> 2, where α satisfies (2.6). Assume

that F ′(·) is locally bounded in D(F) with (3.1) and that F satisfies (3.2) for
some C > 0 in a ball B ⊂ D(F) around a†. If ‖u − uδ‖ ≤ δ and if aδ0 ∈ B is
sufficiently close to a solution a† of F (a) = u, then the discrepancy principle
(4.5) terminates Algorithm 1 with (3.8) terminating the inner iteration after
n(δ) < ∞ iterations. Moreover, the corresponding approximation aδn(δ) converges

to a solution of F (a) = u as δ → 0.

Proof. At first it will be shown that

‖a† − aδn‖ < ‖a† − aδn−1‖, n = 1, 2, · · · , n(δ) (4.6)

Assume an open ball around a† of radius
αρ2τ − 2(α+M2)

2C(1 + τ)(α+M2)
including aδ0 be-

longs to B. In this case it follows from (3.2) that

‖uδ − F (aδ0)− F ′(aδ0)(a
† − aδ0)‖ ≤ δ + C‖a† − aδ0‖‖u− F (aδ0)‖

≤ (1 + C‖a† − aδ0‖)δ + C‖a† − aδ0‖‖uδ − F (aδ0)‖

If n(δ) > 0, then δ <
‖uδ − F (aδ0)‖

τ
, hence from above

‖uδ − F (aδ0)− F ′(aδ0)(a
† − aδ0)‖ ≤ 1 + (1 + τ)C‖a† − aδ0‖

τ
‖uδ − F (aδ0)‖
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This shows that (3.7) holds for n = 0 with γ =
αρ2τ

(α+M2)[1 + (1 + τ)C‖a† − aδ0‖]
which is greater than 2 by assumption, so is (4.6) for n = 1. By induction (3.7)
holds for n < n(δ). Consequently Theorem 3 deduces the monotonicity assertion
(4.6).

Now taking sum of (3.10) from n = 0 to n(δ)− 1, one obtains

n(δ)τ2δ2 ≤
n(δ)−1∑
n=0

‖uδ − F (aδn)‖2 <
γ(α+M2)2

(γ − 2)αρ2
‖a† − aδ0‖2 < ∞

This shows that n(δ) is a finite number.
Next consider aδn(δ) as δ → 0 and discuss two special cases firstly. First, if

n(δ) = n for all δ > 0, by continuity, then aδn → an as δ → 0, where an is the
nth iterate with exact right-hand side u. Furthermore, since ‖uδ −F (aδn)‖ ≤ τδ
by definition of n = n(δ) there must hold F (an) = u in the limit δ → 0.
Consequently, aδn(δ) converges to the solution an of F (a) = u in the case that

n(δ) = n for all δ > 0.
Second, assume that n(δ) → ∞ as δ → 0, and denote by a the limit of {an}

which exists by Theorem 4. Given ε > 0, let m(ε) ∈ N be such that ‖a−am‖ <
ε

2
for m ≥ m(ε), and let δ(ε) be so small that n(δ) > m(ε) for δ < δ(ε), then it
follows from (4.6) that

‖a− aδn(δ)‖ < ‖a− aδm‖ ≤ ‖a− am‖+ ‖am − aδm‖ ≤ ε

2
+ ‖am − aδm‖

for all δ < δ(ε) and some m = m(ε). Again by continuity it follows that ‖am −
aδm‖ <

ε

2
as δ is sufficiently small and hence ‖a − aδn(δ)‖ < ε for δ sufficiently

small. This proves aδn(δ) → a as δ → 0 in the case where n(δ) → ∞.

In the end, we consider the general case. If the convergence result doesn’t
hold, then there must exist σ > 0 and subsequence {δi}, δi → 0, such as

‖aδin(δi) − a‖ ≥ σ (4.7)

Since the real sequence {n(δi)} must exist convergence subsequence(finite or
infinite), we still denote the convergence subsequence by {n(δi)}. If n(δi) → ∞,
as i → ∞, we have from the second special case that

‖aδin(δi) − a‖ → 0 as i → ∞

which contradicts (4.7). If n(δi) → n, we can similarly deduce a contradiction
by the first special case. This proves aδn(δ) → a as δ → 0 in the general case. ¤
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5. Numerical examples

Consider a numerical example for a parameter estimation problem which is a
simplified model of the groundwater hydrology[3], i.e.

{ −(a(x)ux(x))x = −ex, x ∈ (0, 1)
u(0) = 1, u(1) = e1

(5.1)

The assumptions (3.1) and (3.2) hold[3]. Estimate the coefficient a in (5.1) for
the given perturbed value of u.

If the exact data u = ex, then the solution of the inverse problem a† is unique
and a† = 1. Instead of u we used in our computations the perturbed data uδ,
where

uδ = u+ δ
√
2 cos(10πx) (5.2)

with ‖uδ − u‖L2
≤ δ.

The differential equation (5.1) was solved with a Galerkin method on the
finite dimensional subspace of piecewise linear splines on a uniform grid with
subinterval length 1/128. The iterative solution aδn were obtained by solving
(2.4) on the finite dimensional subspace of piecewise linear splines on a uniform
grid with subinterval length 1/128 with implicit iterative method (2.5).

In order to observe the convergence of Algorithm 1 and the effectiveness of
the results, two types of the initial value aδ0 are used in the computation, i.e.
aδ0=const and aδ0 = a† + σ sin 10πx(σ > 0), including those with large initial
errors ‖aδ0 − a†‖L2 . Let n(δ) denote the outer iteration numbers and e0 =
‖aδ0 − a†‖L2 , en = ‖aδn − a†‖L2 . The parameter τ = 1.1 while δ in (5.2) is chosen
as 10−5 and 10−8 in Table 1 and Table 2, respectively.

To accelerate the convergence, we used variable parameters αk = 1
2αk−1,

α0 = 0.5 to replace αn in the inner iterative procedure (2.5). It can be proved
that all the theoretical results in the paper can be expanded to the variable
control parameters(cf.[6]).

From the numerical results, we can see the method is effective. Table 1 and
Table 2 show that the iteration numbers increase as δ decreases. For the same
δ, the iteration numbers increase as the iteration initial errors increase. In the
convergence analysis, the initial value of the iteration aδ0 is required to be close
sufficiently to a†. However, in practical computations, even if aδ0 is far from a†,
the algorithm still shows the convergence property.
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