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GLOBAL STABILITY OF A NONLINEAR DIFFERENCE

EQUATION†

YANQIN WANG

Abstract. In this paper, we investigate the local asymptotic stability,
the invariant intervals, the global attractivity of the equilibrium points,
and the asymptotic behavior of the solutions of the difference equation

xn+1 =
a+bxnxn−k

A+Bxn+Cxn−k
, n = 0, 1, . . . , where the parameters a, b, A,B,C

and the initial conditions x−k, . . . , x−1, x0 are positive real numbers.
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1. Introduction and preliminaries

In this paper, we consider the following rational difference equation

xn+1 =
a+ bxnxn−k

A+Bxn + Cxn−k
, n = 0, 1, . . . , (1.1)

where the parameters a, b, A,B,C > 0, and the initial conditions x−k, . . . , x−1,
x0 > 0. k ∈ {1, 2, 3, . . . }.

We investigate the local and global asymptotic behaviour and the invariant
intervals of the solutions of the difference Eq.(1.1). It is worth mentioning that
our main results are motivated by the results in [3,5,6]. For some related works
see [1-15].

Here, we recall some notations and results which will be useful in our inves-
tigation.

Let I be some interval of real numbers and let
f : Ik+1 → I

be a continuously differentiable function .Then for every pair of initial conditions
x−k, . . . , x0 ∈ I, the difference equation
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xn+1 = f(xn, xn−k), , n = 0, 1, . . . , (1.2)

has a unique solution {xn}∞n=−k.( see [2])
A point x is called an equilibrium point of (1.2) if
x = f(x, x).

That is, xn = x, for n ≥ −k is a solution of Eq.(1.2), or equivalently, x is a
fixed point of f.

Definition 1.1 (Stability). Let x be an equilibrium point of Eq.(1.2) and assume
that I is some interval of real numbers.
(i) The equilibrium x of Eq. (1.2) is called locally stable (or stable) if for every
ε > 0, there exists δ > 0 such that if x−k, . . . , x−1, x0 ∈ I and |x−k − x|+ · · ·+
|x−1 − x|+ |x0 − x| < δ, then

|xn − x| < ε for alln ≥ −k.
(ii) The equilibrium x of Eq. (1.2) is called locally asymptotically stable (or
asymptotically stable) if it is stable and if there exist γ > 0 such that if

x−k, . . . , x−1, x0 ∈ I and |x−k − x|+ · · ·+ |x−1 − x|+ |x0 − x| < γ,
then
limn→∞ xn = x

(iii) The equilibrium x of Eq. (1.2) is called a global attractor if for every
x−k, . . . , x−1, x0 ∈ I, we have

limn→∞ xn = x
(iv) The equilibrium x of Eq. (1.2) is called a globally asymptotically stable (or
globally stable) if it is stable and is a global attractor.
(v) The equilibrium x of Eq. (1.2) is called unstable if it is not stable.

Let
u = ∂f

∂x (x, x) and v = ∂f
∂y (x, x),

where f(x, y) is the function in Eq.(1.2) and x is an equilibrium of the equation.
Then the equation

yn+1 = uyn + vyn−k, n = 0, 1, . . . (1.3)

is called the linearized equation associated with Eq.(1.2) about the equilibrium
point x.

Lemma 1.1 (see [1, 12]). Assume that u, v ∈ R and k ∈ {1, 2, . . . }. Then

|u|+ |v| < 1 (1.4)

is a sufficient condition for the asymptotic stability of the difference equation
(1.3). Suppose in addition that one of the following two cases holds:

(i) k is odd and v > 0;
(ii) k is even and uv > 0.

Then (1.4) is also a necessary condition for the asymptotic stability of Eq.(1.3).
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Lemma 1.2 (see [2]). Consider the difference equation

xn+1 = f(xn, xn−k), n = 0, 1, 2, . . .

where k ∈ {1, 2, ...}. Let I = [c, d] be some interval of real numbers and assume
that

f : [c, d]× [c, d]] → [c, d]
is a continuous function satisfying the following properties:
(i) f(x, y) is increasing in each argument in [c, d];
(ii) the equation f(x, x) = x has a unique positive solution.
Then Eq.(1.2) has a unique equilibrium x ∈ [c, d] and every solution of Eq.(1.2)
converges to x.

Lemma 1.3 (see [2, 4]). Consider the difference equation

xn+1 = f(xn, xn−k), n = 0, 1, 2, . . .

where k ∈ {1, 2, ...}. Let I = [c, d] be some interval of real numbers and assume
that

f : [c, d]× [c, d] → [c, d]
is a continuous function satisfying the following properties:
(i) f(x, y) is non-decreasing in x ∈ [c, d] for each y ∈ [c, d], and f(x, y) is

non-increasing in y ∈ [c, d] for each x ∈ [c, d];
(ii) If (m,M) ∈ [c, d]× [c, d] is a solution of the system f(m,M) = m and
f(M,m) = M , then m = M .

Then Eq.(1.2) has a unique equilibrium x ∈ [c, d] and every solution of Eq.(1.2)
converges to x.

Lemma 1.4 (see [4, 5]). Consider the difference equation

xn+1 = f(xn, xn−k), n = 0, 1, 2, . . .

where k ∈ {1, 2, . . . }. Let I = [c, d] be some interval of real numbers and assume
that

f : [c, d]× [c, d] → [c, d]
is a continuous function satisfying the following properties:
(i) f(x, y) is nonincreasing in each of its arguments;
(ii) If (m,M) ∈ [c, d]× [c, d] is a solution of the system f(m,m) = M and

f(M,M) = m, then m = M .
Then Eq.(1.2) has a unique equilibrium x ∈ [c, d] and every solution of Eq.(1.2)
converges to x.

2. Local stability and periodic character

In this section, we consider the local stability and periodic character of the
positive solutions of Eq.(1.1).
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The change of variables yn =
√
bxn followed by the change xn = yn reduces

Eq.(1.1) to the difference equation

xn+1 =
a+ xnxn−k

r + pxn + qxn−k
, n = 0, 1, . . . , (2.1)

where r = A√
b
, p = B

b , q = C
b , and the initial conditions x−k, . . . , x−1, x0 are

positive real numbers. Hereafter, we focus our attention on Eq.(2.1) instead of
Eq.(1.1).

The equilibrium points of Eq.(2.1) have the following four cases:
Case 1: p+ q > 1, Eq.(2.1) has a unique positive equilibrium point

α =
−r +

√
r2 + 4a(p+ q − 1)

2(p+ q − 1)
.

Case 2: p+ q = 1, Eq.(2.1) has a unique positive equilibrium point

β =
a

r
.

Case 3: p + q < 1, r2 − 4a(1 − p − q) = 0, Eq.(2.1) has a unique positive
equilibrium point

γ =
r

2(1− p− q)
.

Case 4: p + q < 1, r2 − 4a(1 − p − q) > 0, Eq.(2.1) has the following two
equilibrium points:

η1 =
r +

√
r2 − 4a(1− p− q)

2(1− p− q)
, η2 =

r −
√
r2 − 4a(1− p− q)

2(1− p− q)
.

First, we consider the local asymptotic behavior of the equilibrium point α in
Case 1.

Let f : (0, ∞)2 → (0, ∞) be a function defined by

f(x, y) =
a+ xy

r + px+ qy
.

Therefore it follows that

fx =
yr + qy2 − ap

(r + px+ qy)2
, fy =

xr + px2 − aq

(r + px+ qy)2
.

For simplicity and convenience in the following discussion, we define:

g1 := g1(y) = yr + qy2 − ap, g2 := g2(x) = xr + px2 − aq.

θ1 =
−r +

√
r2 + 4apq

2q
, θ2 =

−r +
√
r2 + 4apq

2p
,

where θ1, θ2 is the unique positive solution of equation g1 = 0 and equation
g2 = 0 respectively.
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The linearized equation associated wih Eq.(2.1) about α is

zn+1 =
rα+ qα2 − ap

[r + (p+ q)α]2
zn +

rα+ pα2 − aq

[r + (p+ q)α]2
zn−k, n = 0, 1, 2, . . . ,

The local asymptotic behavior of α is characterized by the following result.

Theorem 2.1. Assume p+q > 1, p < q. Then α is locally asymptotically stable
if one of the following three conditions is satisfied:

(i) p < q ≤ 1,
(ii) p < 1 < q and r2 − a(q − p) ≥ 0,
(iii) 1 < p < q and r2 ≥ a(p+ q).

Proof. When p < q, θ1 < θ2. Let

u = fx(α, α) =
rα+ qα2 − ap

[r + (p+ q)α]2
, v = fy(α, α) =

rα+ pα2 − aq

[r + (p+ q)α]2
.

(i) If p < q ≤ 1, then α ≥ θ2 and g1 > 0, g2 > 0 in [θ2, ∞). So, |u| + |v| =
u+ v < 1.
(ii) If p < 1 < q and r2 − a(q − p) ≥ 0, then θ1 < α < θ2, and g1 > 0, g2 < 0 in
(θ1, θ2). Thus, |u|+ |v| = u− v < 1.
(iii) If 1 ≤ p < q and r2 ≥ a(p+ q), then α < θ1, and g1 < 0, g2 < 0 in (0, θ1].
Therefore, |u|+ |v| = −u− v < 1. The result follows from Lemma 1.1. 2

Theorem 2.2. Assume p + q > 1, p > q. Then α is locally asymptotically
stable if one of the following three conditions is satisfied:

(i) 1 ≥ p > q,
(ii) p > 1 > q,
(iii) p > q ≥ 1 and r2 ≥ a(p+ q).

Proof. The proof is similar to that of Theorem 2.1, and we omit it. 2

Theorem 2.3. Assume p + q > 1, p = q. Then α is locally asymptotically
stable if one of the following three conditions is satisfied:

(i) p = q < 1,
(ii) p = q > 1, and r2 ≥ a(p+ q).

Proof. The proof is similar to that of Theorem 2.1, and we omit it. 2

Next, we investigate the local asymptotic behavior of the remaining equilib-
rium points β, η1, η2, γ and have the following result.

Theorem 2.4.
(i) If p+ q = 1, then β is locally asymptotically stable.
(ii) If p+ q < 1, r2 − 4a(1− p− q) = 0, then γ is locally asymptotically
stable.

(iii) If p+ q < 1, r2 − 4a(1− p− q) > 0, then η1 is unstable, while η2 is
locally asymptotically stable.

Proof. (i)The linearized equation associated wih Eq.(2.1) about the equilibrium
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point β is

zn+1 =
rβ + qβ2 − ap

[r + (p+ q)β]2
zn +

rβ + pβ2 − aq

[r + (p+ q)β]2
zn−k, n = 0, 1, 2, . . . .

Set

u = fx(β, β) =
rβ + qβ2 − ap

[r + (p+ q)β]2
, v = fy(β, β) =

rβ + pβ2 − aq

[r + (p+ q)β]2
.

If p + q = 1, then β > θ1, β > θ2, and g1(β) > 0, g2(β) > 0. Thus,
|u|+ |v| = u+ v < 1, the result (i) follows from Lemma1.1.

(ii)If p + q < 1, r2 − 4a(1 − p − q) = 0, then γ > θ1, γ > θ2. Similarly to
the proof of (i), the result follows from Lemma1.1.

(iii)The linearized equation associated wih Eq.(2.1) about the equilibrium
point η1 is

zn+1 =
rη1 + qη1

2 − ap

[r + (p+ q)η1]2
zn +

rη1 + pη1
2 − aq

[r + (p+ q)η1]2
zn−k, n = 0, 1, 2, . . . .

Set

u = fx(η1, η1) =
rη1 + qη1

2 − ap

[r + (p+ q)η1]2
, v = fy(η1, η1) =

rη1 + pη1
2 − aq

[r + (p+ q)η1]2
.

If p + q < 1, r2 − 4a(1 − p − q) > 0, then η1 > θ1, η1 > θ2, and g1(η1) >
0, g2(η1) > 0. But |u|+ |v| = u+ v > 1, and v > 0, uv > 0. So, η1 is unstable
by Lemma1.1(i-ii).

As for as η2, similarly to the proof of (i), the result follows from Lemma1.1.
2

In the following, we consider the periodic character of the positive solutions
of Eq.(2.1).

Theorem 2.5. Eq.(2.1) has no positive solutions with prime period two.

Proof. Assume, for the sake of contradiction, that
. . . ,Φ,Ψ,Φ,Ψ, . . .

is a prime period-two positive solution of Eq.(2.1).There are two cases to be
considered.

Case 1: k is odd.
In this case, xn+1 = xn−k, Φ and Ψ satisfy the system
a+ΨΦ = Φr + pΦΨ+ qΦ2 and a+ΦΨ = Ψr + pΦΨ+ qΨ2.

Subtracting these two equations, we obtain
(Φ−Ψ)[r + q(Φ + Ψ)] = 0.

Since r + q(Φ + Ψ) > 0, we have Φ = Ψ. This is a contradiction.
Case 2: k is even.
In this case, xn = xn−k, Φ and Ψ satisfy the system
a+Ψ2 = Φr + (p+ q)ΦΨ and a+Φ2 = Ψr + (p+ q)ΦΨ.

Subtracting these two equations, we obtain
(Ψ− Φ)(Ψ + Φ+ r) = 0.
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Since Ψ+Φ+r > 0, we have Φ = Ψ. This is a contradiction. 2

3. Global attractivity of the positive equilibrium points

In this section, we investigate the global attractivity of the four equilibrium
points α, β, γ, η2.

First, we consider the global attractivity of α and have the following results.

Theorem 3.1. Assume that p+ q > 1, p < q. Then the positive equilibrium α
of Eq.(2.1) is a global attractor.

Proof. When p < q, θ1 < θ2. Set

f(x, y) =
a+ xy

r + px+ qy
.

Observe that the function f(x, y) increases in each argument in [θ2, ∞), increases
in x for all y ∈ (θ1, θ2), decreases in y for all x ∈ (θ1, θ2), decreases in each
argument in (0, θ1].

We divide the proof into the following three case:
Case 1: p < q ≤ 1.
Since g1 > 0, g2 > 0 for all x, y ∈ [θ2, ∞), f(x, y) increases in each argument

in (θ2, ∞). α ≥ θ2 if p < q < 1.
The equation f(x, x) = x has a unique solution α in [θ2, ∞). Thus by

Lemma1.2, Eq.(2.1) has a unique equilibrium point α and every solution of
Eq.(2.1) converges to α in [θ2, ∞).

Case 2: p < 1 < q.
Since g1 > 0, g2 < 0 for all x, y ∈ (θ1, θ2). f(x, y) increases in x for all

y ∈ (θ1, θ2) and decreases in y for all x ∈ (θ1, θ2). y2 < α < θ2 if p < 1 < q.
The only solution of the system

m =
a+mM

r + pm+ qM
, M =

a+Mm

r + pM + qm

is m = M. Then by Lemma1.3, every solution of Eq.(2.1) converges to α in
(θ1, θ2).

Case 3: 1 ≤ p < q.
Since g1 < 0, g2 < 0 for all x, y ∈ (0, θ1], f(x, y) decreases in each argument

in (0, θ1]. α ≤ θ1 if 1 < p < q. The only solution of the system

M =
a+m2

r + (p+ q)m
, m =

a+M2

r + (p+ q)M

is m = M. Then following from Lemma1.4, every solution of Eq.(2.1) converges
to α in (0, θ1]. 2

Theorem 3.2. Assume that p+ q > 1, p > q.
Then the positive equilibrium α of Eq.(2.1) is a global attractor.
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Proof. When p > q, θ1 > θ2. Similar to the proof of Theorem 3.1, and it is easy
to verify that the following statement is true:
(i) If 1 ≥ p > q, then every solution of Eq.(2.1) converges to α in [θ1, ∞).
(ii) If p > 1 > q, then every solution of Eq.(2.1) converges to α in (θ2, θ1).
(iii) If p > q ≥ 1, then every solution of Eq.(2.1) converges to α in (0, θ2]. 2

Theorem 3.3. Assume that p+ q > 1, p = q. Then the positive equilibrium α
of Eq.(2.1) is a global attractor.

Proof. Similar to the proof of Theorem 3.1, the following statement is easily
proved to be true:

(i) If p = q ≤ 1, then Eq.(2.1) has a unique equilibrium point α and every
solution of Eq.(2.1) converges to α in [θ2, ∞).

(ii) If p = q > 1, then every solution of Eq.(2.1) converges to α in (0, θ2). 2

By Theorem 3.1, 3.2, 3.3 and Lemma2.1, we have the following corollaries.

Corollary 3.1. Assume p + q > 1, p < q. Then α is globally asymptotically
stable if one of the following three conditions is satisfied:

(i) p < q ≤ 1,
(ii) p < 1 < q and r2 − a(q − p) ≥ 0,
(iii) 1 < p < q and r2 ≥ a(p+ q).

Corollary 3.2. Assume p + q > 1, p > q. Then α is globally asymptotically
stable if one of the following three conditions is satisfied:

(i) 1 ≥ p > q,
(ii) p > 1 > q,
(iii) p > q ≥ 1 and r2 ≥ a(p+ q).

Corollary 3.3. Assume p + q > 1, p = q. Then α is globally asymptotically
stable if one of the following three conditions is satisfied:

(i) p = q ≤ 1,
(ii) p = q > 1, and r2 ≥ a(p+ q).

Next, we examine the global attractivity of β, γ, η2.

Theorem 3.4.
(i) If p+ q = 1, then β is a global attractor.
(ii) If p+ q < 1, r2 − 4a(1− p− q) = 0, then γ is a global attractor.
(iii) If p+ q < 1, r2 − 4a(1− p− q) > 0, then η2 is a global attractor.

Proof. (i) Set

f(x, y) =
a+ xy

r + px+ qy
.

We divide the proof into the following two case:
Case 1: p > q.
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In this case, θ2 < θ1, β > θ1, f(x, y) is increasing in each argument in (θ1, ∞).
What’s more, the equation f(y, y) = y has a unique solution β in (θ1, ∞). Thus
by Lemma1.2, Eq.(2.1) has a unique equilibrium point β and every solution of
Eq.(2.1) converges to α in (θ1, ∞).
Case 2: p ≤ q.

In this case, θ2 ≥ θ1, β > θ2, f(x, y) is increasing in each argument in (θ2, ∞).
In addition, the equation f(y, y) = y has a unique solution β in (θ2, ∞). Thus
by Lemma1.2, Eq.(2.1) has a unique equilibrium point β and every solution of
Eq.(2.1) converges to α in (θ2, ∞).

(ii) The proof is similar to that of (i), and we omit it.
(iii) If p + q < 1, r2 − 4a(1 − p − q) > 0, then η1 > η2 > max {θ2, θ1}

and g1(η1) > 0, g2(η1) > 0, g1(max {θ2, θ1}) > 0, g2(max {θ2, θ1}) > 0. So,
f(x, y) is increasing in each argument in (max {θ2, θ1}, η1). What’s more, the
equation f(y, y) = y has a unique solution η2 in (max {θ2, θ1}, η1). Thus by
Lemma1.2, Eq.(2.1) has a unique equilibrium point η2 and every solution of
Eq.(2.1) converges to η2 in (max {θ2, θ1}, η1). 2

By Theorem 3.4 and Lemma2.1, we obtain the following corollary.

Corollary 3.4.
(i) If p+ q = 1, then β is globally asymptotically stable.
(ii) If p+ q < 1, r2 − 4a(1− p− q) = 0, then γ is globally asymptotically
stable.

(iii) If p+ q < 1, r2 − 4a(1− p− q) > 0, then η2 is globally asymptotically
stable.

4. Invariant intervals

From the discussion of the global attractivity of the positive equilibrium points
in section 3, it is easy to have the following results about invariant intervals.

Theorem 4.1. Assume that p+ q > 1, r2 ≥ a(p+ q), p < q.
(i) If p < q ≤ 1, then every positive solution of Eq.(2.1) lies eventually in
[θ2, ∞).

(ii) If p < 1 < q , then every positive solution of Eq.(2.1) lies eventually in
(θ1, θ2).

(iii) If 1 ≤ p < q, then every positive solution of Eq.(2.1) lies eventually in
(0, θ1].

Theorem 4.2. Assume that p+ q > 1, r2 ≥ a(p+ q), p > q.
(i) If 1 ≥ p > q, then every positive solution of Eq.(2.1) lies eventually in
[θ1, ∞).

(ii) If p > 1 > q, then every positive solution of Eq.(2.1) lies eventually in
(θ2, θ1).

(iii) If p > q ≥ 1 then every positive solution of Eq.(2.1) lies eventually in
(0, θ2].
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Theorem 4.3. Assume that p+ q > 1, r2 ≥ a(p+ q), p = q.
(i) If p = q ≤ 1, then every positive solution of Eq.(2.1) lies eventually in
[θ2, ∞).

(ii) If p = q > 1, then every positive solution of Eq.(2.1) lies eventually in
(0, θ2).

Theorem 4.4. Assume that p+ q = 1, then the following statement is true:
(i) If p > q, then every positive solution of Eq.(2.1) lies eventually in (θ1, ∞).
(ii) If p ≤ q, then every positive solution of Eq.(2.1) lies eventually in (θ2, ∞).

Theorem 4.5. Assume that p+q < 1, r2−4a(1−p−q) = 0, then the following
statement is true:

(i) If p > q, then every positive solution of Eq.(2.1) lies eventually in (θ1, ∞).
(ii) If p ≤ q, then every positive solution of Eq.(2.1) lies eventually in (θ2, ∞).
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