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CONVERGENCE OF MULTI-RELAXED NONSTATIONARY

MULTISPLITTING METHODS†
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Abstract. Recently, Cheng et al. [3] introduced new nonstationary mul-
tisplitting methods with multi-relaxed parameters. In this paper, we first
provide correct proofs for convergence results of the multi-relaxed nonsta-
tionary multisplitting method which have not been proved completely by
Cheng et al., and then we provide new convergence results for the multi-
relaxed nonstationary two-stage multisplitting method.
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1. Introduction

In this paper, we consider the nonstationary multisplitting methods with
multi-relaxed parameters which were recently introduced by Cheng et al. [3] for
solving a linear system of the form

Ax = b, x, b ∈ Rn, (1)

where A ∈ Rn×n is a large sparse H-matrix. Multisplitting method was in-
troduced by O’Leary and White [11] and was further studied by many au-
thors [2, 4, 6, 9, 10, 12, 13, 14].

A representation A = M−N is called a splitting of A when M is nonsingular.
A collection of triples (Mk, Nk, Ek), k = 1, 2, . . . , `, is called a multisplitting of A
if A = Mk −Nk is a splitting of A for k = 1, 2, . . . , `, and Ek’s, called weighting
matrices, are nonnegative diagonal matrices such that

∑`
k=1 Ek = I. The multi-

relaxed nonstationary multisplitting method associated with this multisplitting
and positive relaxation parameters ω, ω1, . . . , ω` for solving a linear system Ax =
b is as follows.
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Algorithm 1: Multi-relaxed nonstationary multisplitting method

Given an initial vector x0

For i = 1, 2, . . . , until convergence
For k = 1 to `

yk,0 = xi−1

For j = 1 to s(k, i)
yk,j = ωkM

−1
k Nkyk,j−1 + (1− ωk)yk,j−1 + ωkM

−1
k b

xi = ω
∑̀

k=1

Ekyk,s(k,i) + (1− ω)xi−1

Notice that Algorithm 1 with ωk = 1 for k = 1, 2, . . . , ` is called the relaxed
nonstationary multisplitting method. When (Mk, Nk, Ek), k = 1, 2, . . . , `, is a
multisplitting of A and Mk = Bk −Ck is a splitting of Mk for each k, the multi-
relaxed nonstationary two-stage multisplitting method with positive relaxation
parameters ω, ω1, . . . , ω` for solving a linear system Ax = b is as follows.

Algorithm 2: Multi-relaxed nonstationary two-stage multisplitting

method

Given an initial vector x0

For i = 1, 2, . . . , until convergence
For k = 1 to `

yk,0 = xi−1

For j = 1 to s(k, i)
yk,j = ωkB

−1
k (Ckyk,j−1 +Nkxi−1 + b) + (1− ωk)yk,j−1

xi = ω
∑̀

k=1

Ekyk,s(k,i) + (1− ω)xi−1

Notice that Algorithm 2 with ω1 = · · · = ω` and ω = 1 is called the relaxed
nonstationary two-stage multisplitting method. Also notice that the number of
inner iterations s(k, i) in Algorithms 1 and 2 depends on the iteration i and the
splitting A = Mk − Nk. Throughout the paper, it is assumed that s(k, i) ≥ 1
for every k and i.

Cheng et al. [3] provided convergence results for both Algorithm 1 and Algo-
rithm 2, and they showed the effectiveness of the preconditioners obtained from
these methods. However, their convergence results for the multi-relaxed nonsta-
tionary multisplitting method (Algorithm 1) have not been proved completely,
which is a main motivation of this paper. This paper is organized as follows. In
Section 2, we present some notation, definitions and preliminary results which we
refer to later. In Section 3, we first provide correct proofs for convergence results
of the multi-relaxed nonstationary multisplitting method (Algorithm 1) which
have not been proved completely by Cheng et al. [3], and then we provide new
convergence results for the multi-relaxed nonstationary two-stage multisplitting
method (Algorithm 2) for solving the linear system (1).
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2. Preliminaries

For a vector x ∈ Rn, x ≥ 0 (x > 0) denotes that all components of x are
nonnegative (positive). For two vectors x, y ∈ Rn, x ≥ y (x > y) means that
x − y ≥ 0 (x − y > 0). For a vector x ∈ Rn, |x| denotes the vector whose
components are the absolute values of the corresponding components of x. These
definitions carry immediately over to matrices. For a square matrix B, diag(B)
denotes a diagonal matrix whose diagonal part coincides with the diagonal part
of B, and ρ(B) denotes the spectral radius of the matrix B.

A matrix A = (aij) ∈ Rn×n is called an M -matrix if aij ≤ 0 for i 6= j and
A−1 ≥ 0. The comparison matrix 〈A〉 = (αij) of a matrix A = (aij) is defined
by

αij =

{
|aij | if i = j

−|aij | if i 6= j
.

A matrix A is called an H-matrix if 〈A〉 is an M -matrix. A splitting A = M−N
is called an H-compatible splitting if 〈A〉 = 〈M〉 − |N |. It was shown in [5] that
if A is an H-matrix and A = M − N is an H-compatible splitting, then M is
also an H-matrix.

Lemma 2.1 ([4]). Let A = D −B be an H-matrix with D = diag(A). Then

(a) A and |D| are nonsingular and ρ(|D|−1|B|) < 1.

(b) |A−1| ≤ 〈A〉−1
.

Lemma 2.2 ([1]). Let Ti, i = 1, 2, . . ., be a sequence of square matrices. If there
exists a matrix norm ‖·‖ and a θ < 1 such that ‖Ti‖ ≤ θ for all i = 1, 2, . . ., then

lim
i→∞

TiTi−1 · · ·T1 = 0.

For a vector v > 0, the weighted max norm ‖x‖v is defined by

‖x‖v = inf{β > 0: − βv ≤ x ≤ βv}.
For a matrix B, ‖B‖v denotes the matrix norm of B corresponding to the
weighted max norm defined above. It is well-known that ‖B‖v = ‖|B|v‖v and
|x| ≤ |y| implies ‖x‖v ≤ ‖y‖v.

A general algorithm for building ILU factorization can be derived by per-
forming Gaussian elimination and dropping some of elements in predetermined
off-diagonal positions. Let Sn denote the set of all pairs of indices of off-diagonal
matrix entries, that is,

Sn = {(i, j) | i 6= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n}.
The following theorem shows the existence of the ILU factorization for an H-
matrix A.

Theorem 2.3 ([8]). Let A be an n× n H-matrix. Then, for every zero pattern
set Q ⊂ Sn, there exist a unit lower triangular matrix L = (lij), an upper
triangular matrix U = (uij), and a matrix N = (nij), with lij = uij = 0 if



756 SeYoung Oh and Jae Heon Yun

(i, j) ∈ Q and nij = 0 if (i, j) 6∈ Q, such that A = LU − N . Moreover, the
factors L and U are also H-matrices.

In Theorem 2.3, A = LU−N is called an ILU factorization of A corresponding
to a zero pattern set Q ⊂ Sn. The following theorem shows the relations between
the ILU factorizations of an H-matrix A and 〈A〉.
Theorem 2.4 ([7, 8]). Let A be an n × n H-matrix. Let A = LU − N and

〈A〉 = L̃Ũ − Ñ be the ILU factorizations of A and 〈A〉 corresponding to a zero
pattern set Q ⊂ Sn, respectively. Then each of the following holds:

(a) |L−1| ≤ L̃−1, (b) |U−1| ≤ Ũ−1, (c) |N | ≤ Ñ .

3. Convergence of the multi-relaxed nonstationary multisplitting
methods

First, we consider convergence of the multi-relaxed nonstationary multisplit-
ting method (Algorithm 1), which can be written as

xi = Hω,ixi−1 + Pω,ib, i = 1, 2, . . . , (2)

where

Hω,i = ω
∑̀

k=1

EkR
s(k,i)
k + (1− ω)I,

Pω,i = ω
∑̀

k=1

ωkEk




s(k,i)−1∑

j=0

Rj
k


M−1

k ,

and

Rk = ωkM
−1
k Nk + (1− ωk)I.

The Hω,i’s are called iteration matrices for Algorithm 1. Then, it is easy to show
that Pω,iA = I −Hω,i for each i. Hence, the exact solution ξ of Ax = b satisfies

ξ = Hω,iξ + Pω,ib, i = 1, 2, . . . . (3)

From (2) and (3), the error vector ei = xi − ξ satisfies

ei = Hω,iei−1 = Hω,iHω,i−1 · · ·Hω,1e0, i = 1, 2, . . . . (4)

From (4), the sequence of vectors generated by the iteration (2) converges to the
exact solution of Ax = b for any initial vector x0 if and only if

lim
i→∞

Hω,iHω,i−1 · · ·Hω,1 = 0. (5)

Cheng et al. [3] provided new convergence results for Algorithm 1, but their
convergence proofs were done by showing ρ(Hω,i) < 1 for each i instead of
showing the relation (5). The following example shows that their proofs are not
correct.
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Example 3.1. For each i = 1, 2, . . ., let

H2i =

(
1
2 1
1
8

1
2

)
, H2i−1 =

(
0 0
2 1

2

)
.

Then, ρ(H2i) ≈ 0.8536 and ρ(H2i−1) =
1
2 . Thus ρ(Hi) < 1 for each i. Since

H2iH2i−1 =

(
2 1

2
1 1

4

)
,

ρ(H2iH2i−1) =
9
4 > 1 for each i. It follows that lim

i→∞
HiHi−1 · · ·H1 6= 0. Hence,

ρ(Hi) < 1 for each i does not imply that lim
i→∞

HiHi−1 · · ·H1 = 0.

Theorems 3.1 and 3.3 in [3] have not been proved completely, so we provide
correct proofs for these theorems which are slightly modified in what follows.

Theorem 3.2. Let A = D − B be an n × n H-matrix with D = diag(A),
and let J = |D|−1|B|. For each k = 1, 2, . . . , `, let A = Mk − Nk be an H-
compatible splitting of A with diag(|Mk|) ≤ |D|. Then, the multi-relaxed non-
stationary multisplitting method associated with the multisplitting (Mk, Nk, Ek),
k = 1, 2, . . . , `, converges to the exact solution of Ax = b for any initial vector
x0 if 0 < ωk < 2

1+ρ for k = 1, 2, . . . , ` and 0 < ω < 2
1+α , where ρ = ρ(J) and

α = max{ωkρ+ |1− ωk| | 1 ≤ k ≤ `}.
Proof. From Lemma 2.2, it suffices to show that there exists a matrix norm ‖·‖
and a θ < 1 such that ‖Hω,i‖ ≤ θ for all i = 1, 2, . . .. Let e = (1, 1, . . . , 1)T .
Since J ≥ 0, J + εeeT > 0 for any ε > 0 and thus there exists a Perron vector
xε > 0 such that

(J + εeeT )xε = ρεxε, (6)

where ρε = ρ(J + εeeT ). Since ρ < 1 from Lemma 2.1 and 0 < ωk < 2
1+ρ from

the assumption, ωkρ+ |1−ωk| < 1 and thus α < 1. By continuity of the spectral
radius, for sufficiently small ε > 0

ρε < 1 and ωkρε + |1− ωk| < 1.

Since A = Mk −Nk is an H-compatible splitting of A and 〈A〉 = |D|(I −J), one
obtains

|Rk| ≤ ωk〈Mk〉−1|Nk|+ |1− ωk|I
≤ ωk

(
I − 〈Mk〉−1|D|(I − (J + εeeT ))

)
+ |1− ωk|I.

(7)

Since diag(|Mk|) ≤ |D|, I ≤ 〈Mk〉−1|D|. Using this fact and (7), one obtains

|Rk|xε ≤ ωk

(
xε − (1− ρε)〈Mk〉−1|D|xε

)
+ |1− ωk|xε

≤ (ωkρε + |1− ωk|)xε

≤ αεxε,

(8)
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where αε = max{ωkρε + |1− ωk| | 1 ≤ k ≤ `} < 1. Using (8), one obtains

|Hω,i|xε ≤
(
ω
∑̀

k=1

Ek|Rk|s(k,i) + |1− ω|I
)
xε

≤ (ωαε + |1− ω|)xε.

(9)

Since 0 < ω < 2
1+α and α < 1, ωα + |1 − ω| < 1. By continuity of the spectral

radius, lim
ε→0+

αε = α and thus ωαε + |1 − ω| < 1 for sufficiently small ε > 0.

Taking the weighted max norm ‖·‖xε
to both sides of equation (9),

‖Hω,i‖xε
= ‖|Hω,i|xε‖xε

≤ ωαε + |1− ω| ≡ θε.

Since i is arbitrary, ‖Hω,i‖xε
≤ θε < 1 for all i = 1, 2, . . .. Therefore, the proof

is complete. ¤
Theorem 3.3. Let A = D−B be an n×n H-matrix with D = diag(A). Let J =
|D|−1|B| and let Q1, Q2, . . . , Q` be zero pattern sets which are subsets of Sn. For
each 1 ≤ k ≤ `, let A = LkUk −Nk be the ILU factorization of A corresponding
to Qk. Then, the multi-relaxed nonstationary multisplitting method associated
with the multisplitting (LkUk, Nk, Ek), k = 1, 2, . . . , `, converges to the exact
solution of Ax = b for any initial vector x0 if 0 < ωk < 2

1+ρ for k = 1, 2, . . . , `

and 0 < ω < 2
1+α , where ρ = ρ(J) and α = max{ωkρ+ |1− ωk| | 1 ≤ k ≤ `}.

Proof. For each 1 ≤ k ≤ `, let 〈A〉 = L̃kŨk − Ñk be the ILU factorization of
〈A〉 corresponding to Qk. By some manipulation, it can be shown that |D−1| ≤
(L̃kŨk)

−1 for all k = 1, 2, . . . , `. It follows that for all k = 1, 2, . . . , `

I ≤ (L̃kŨk)
−1|D|. (10)

Using (10) and Theorem 2.4, this theorem can be proved in a similar way as was
done for Theorem 3.2. ¤

Next, we consider convergence of the multi-relaxed nonstationary two-stage
multisplitting method (Algorithm 2), which can be written as

xi = H∗
ω,ixi−1 + P ∗

ω,ib, i = 1, 2, . . . , (11)

where

H∗
ω,i = ω

∑̀

k=1

Ek


(R∗

k)
s(k,i) + ωk




s(k,i)−1∑

j=0

(R∗
k)

j


B−1

k Nk


+ (1− ω)I,

P ∗
ω,i = ω

∑̀

k=1

ωkEk




s(k,i)−1∑

j=0

(R∗
k)

j


B−1

k ,

and
R∗

k = ωkB
−1
k Ck + (1− ωk)I.

The H∗
ω,i’s are called iteration matrices for Algorithm 2. It is easy to show

that P ∗
ω,iA = I −H∗

ω,i for each i and the sequence of vectors generated by the
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iteration (11) converges to the exact solution of Ax = b for any initial vector x0

if and only if

lim
i→∞

H∗
ω,iH

∗
ω,i−1 · · ·H∗

ω,1 = 0. (12)

Lemma 3.4. Let A be an n×n H-matrix. For each 1 ≤ k ≤ `, let A = Mk−Nk

be an H-compatible splitting of A and Mk = Bk − Ck be an H-compatible
splitting of Mk. Let R∗

k = ωkB
−1
k Ck + (1 − ωk)I and H∗

i,k = (R∗
k)

s(k,i) +

ωk

(∑s(k,i)−1
j=0 (R∗

k)
j
)
B−1

k Nk for k = 1, 2, . . . , ` and i = 1, 2, . . .. If ωk ∈ (0, 1],

then there exists a θk ∈ [0, 1) such that |H∗
i,k|v ≤ θkv for all i, where v =

〈A〉−1e > 0 and e = (1, 1, . . . , 1)T .

Proof. Let

R̃k = ωk〈Bk〉−1|Ck|+ (1− ωk)I,

H̃i,k = (R̃k)
s(k,i) + ωk




s(k,i)−1∑

j=0

(R̃k)
j


 〈Bk〉−1|Nk|.

Since A = Mk − Nk and Mk = Bk − Ck are H-compatible splittings and 0 <
ωk ≤ 1, it can be easily shown that

|R∗
k| ≤ R̃k and thus |H∗

i,k| ≤ H̃i,k. (13)

Since I − R̃k = ωk〈Bk〉−1〈Mk〉 and 〈A〉 = 〈Mk〉 − |Nk|, one obtains

H̃i,k = I − ωk




s(k,i)−1∑

j=0

(R̃k)
j


 〈Bk〉−1〈A〉. (14)

Since v > 0 and 〈Bk〉−1e > 0, from (13) and (14) one obtains

|H∗
i,k|v ≤ H̃i,kv = v − ωk〈Bk〉−1e− · · ·

≤ v − ωk〈Bk〉−1e < v
(15)

for all i. From relation (15), there exists a 0 ≤ θk < 1 such that |H∗
i,k|v ≤ θkv

for all i. Therefore, the proof is complete. ¤

Theorem 3.5. Let A be an n×n H-matrix. For each 1 ≤ k ≤ `, let A = Mk−Nk

be an H-compatible splitting of A and Mk = Bk−Ck be an H-compatible splitting
of Mk. Then, the multi-relaxed nonstationary two-stage multisplitting method
with A = Mk − Nk as outer splittings and Mk = Bk − Ck as inner splittings
converges to the exact solution of Ax = b for any initial vector x0 if 0 < ωk ≤ 1
for k = 1, 2, . . . , ` and 0 < ω < 2

1+θ , where θ = max{θk | 1 ≤ k ≤ `} and θk is
defined as in Lemma 3.4.
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Proof. Let H∗
i,k be defined as in Lemma 3.4. Then H∗

ω,i = ω
∑`

k=1 EkH
∗
i,k+(1−

ω)I. Using this equation and Lemma 3.4, one obtains

|H∗
ω,i|v ≤ ω

∑̀

k=1

Ek|H∗
i,k|v + |1− ω|v

≤ ω
∑̀

k=1

Ekθkv + |1− ω|v

≤ (ωθ + |1− ω|)v.

(16)

From (16), ‖H∗
ω,i‖v ≤ (ωθ + |1 − ω|) for all i = 1, 2, . . .. Since 0 < ω < 2

1+θ ,

(ωθ+|1−ω|) < 1. Hence, Lemma 2.2 implies (12), which completes the proof. ¤

Lemma 3.6. Let A be an n × n H-matrix. Let Q1, Q2, . . . , Q` be zero pattern
sets which are subsets of Sn. For each 1 ≤ k ≤ `, let A = Mk − Nk be an
H-compatible splitting and Mk = LkUk − Ck be the ILU factorization of Mk

corresponding to Qk. Let R
∗
k = ωk(LkUk)

−1Ck+(1−ωk)I and H∗
i,k = (R∗

k)
s(k,i)+

ωk

(∑s(k,i)−1
j=0 (R∗

k)
j
)
(LkUk)

−1Nk for k = 1, 2, . . . , ` and i = 1, 2, . . .. If ωk ∈
(0, 1], then there exists a θk ∈ [0, 1) such that |H∗

i,k|v ≤ θkv for all i, where

v = 〈A〉−1e > 0 and e = (1, 1, . . . , 1)T .

Proof. For each 1 ≤ k ≤ `, let 〈Mk〉 = L̃kŨk − C̃k be the ILU factorization of
〈Mk〉 corresponding to Qk. Let

R̃k = ωk(L̃kŨk)
−1C̃k + (1− ωk)I,

H̃i,k = (R̃k)
s(k,i) + ωk




s(k,i)−1∑

j=0

(R̃k)
j


 (L̃kŨk)

−1|Nk|.

Using Theorem 2.4, one can easily obtain

|R∗
k| ≤ R̃k and thus |H∗

i,k| ≤ H̃i,k. (17)

The remaining part of the proof can be done in the similar way as was done for
Lemma 3.4. ¤

Theorem 3.7. Let A be an n×n H-matrix. Let Q1, Q2, . . . , Q` be zero pattern
sets which are subsets of Sn. For each 1 ≤ k ≤ `, let A = Mk − Nk be an
H-compatible splitting and Mk = LkUk−Ck be the ILU factorization of Mk cor-
responding to Qk. Then, the multi-relaxed nonstationary two-stage multisplitting
method with A = Mk − Nk as outer splittings and Mk = LkUk − Ck as inner
splittings converges to the exact solution of Ax = b for any initial vector x0 if
0 < ωk ≤ 1 for k = 1, 2, . . . , ` and 0 < ω < 2

1+θ , where θ = max{θk | 1 ≤ k ≤ `}
and θk is defined as in Lemma 3.6.

Proof. Using Lemma 3.6, this theorem can be proved as in Theorem 3.5. ¤



Convergence of multi-relaxed nonstationary multisplitting methods 761

In Theorems 3.5 and 3.7, it can be seen that θ < 1 and thus the upper bound
of ω is greater than 1 even if it is difficult to estimate θ a priori. Notice that
Theorems 3.5 and 3.7 are convergence results which are different from Theorem
3.5 in [3].

In Algorithm 2, if s(k, i) = s(k) for all i, then one obtains the multi-relaxed
two-stage multisplitting method, which can be written as

xi = H∗
ωxi−1 + P ∗

ωb, i = 1, 2, . . . , (18)

where

H∗
ω = ω

∑̀

k=1

Ek


(R∗

k)
s(k) + ωk




s(k)−1∑

j=0

(R∗
k)

j


B−1

k Nk


+ (1− ω)I,

P ∗
ω = ω

∑̀

k=1

ωkEk




s(k)−1∑

j=0

(R∗
k)

j


B−1

k ,

and

R∗
k = ωkB

−1
k Ck + (1− ωk)I.

Theorem 3.8. Let A be an n × n H-matrix. For each 1 ≤ k ≤ `, let A =
Mk−Nk be an H-compatible splitting of A and Mk = Bk−Ck be an H-compatible
splitting of Mk. Then, the multi-relaxed two-stage multisplitting method with
A = Mk−Nk as outer splittings and Mk = Bk−Ck as inner splittings converges
to the exact solution of Ax = b for any initial vector x0 if 0 < ωk ≤ 1 for
k = 1, 2, . . . , ` and 0 < ω < 2

1+ρ(H∗
1 )
, where H∗

1 denotes H∗
ω with ω = 1.

Proof. Notice that H∗
ω = ωH∗

1 + (1− ω)I. Since 0 < ωk ≤ 1 for k = 1, 2, . . . , `,
ρ(H∗

1 ) < 1 can be shown in the similar way as was done for Theorem 3.4 in [2].
Since 0 < ω < 2

1+ρ(H∗
1 )
, ρ(H∗

ω) < 1 is obtained. Hence, the proof is complete. ¤

In Theorems 3.8, notice that the upper bound of ω is greater than 1 since
ρ(H∗

1 ) < 1.
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