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COINCIDENCE AND COMMON FIXED POINTS OF

NONCOMPATIBLEMAPS
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Abstract. Fixed point theorems for two hybrid pairs of single valued
and multivalued noncompatible maps under strict contractive condition
are proved, without appeal to continuity of any map involved therein and
completeness of underlying space. These results extend, unify and improve
the earlier comparable known results.
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1. Introduction and Preliminaries

Sessa [21] introduced the concept of weakly commuting maps. Jungck [11]
generalized the notion of weak commutativity by introducing compatible maps
and then weakly compatible maps [12]. Afterwards Jungck and Rhoades [13]
further extended weak compatibility to the setting of single valued and multi-
valued maps. Since then, many interesting coincidence and common fixed point
theorems of compatible and weakly compatible maps under various contractive
conditions and assuming the continuity of at least one of the mappings, have
been obtained by a number of authors. For a survey of coincidence point theory,
its applications and related results, we refer to [3], [4], [5], [6],[7], [10], [22] and
references contained therein. However, a study of common fixed points of non-
compatible mappings is also equally interesting. Pant [19] initiated the study of
noncompatible maps satisfying certain contractive conditions. In 2002, Aamri
and El Moutawakil [1] defined a property (EA) for single valued maps on a met-
ric space and obtained some common fixed point theorems for such maps under
strict contractive conditions. The class of mappings satisfying (EA) property
contains compatible as well as noncompatible maps. Kamran [14] extended the
property (EA) for a hybrid pair of single valued and multivalued maps. Recently,
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Liu et al. [17] obtained coincidence and common fixed point results for two pairs
of hybrid maps defining common (EA) property for such pairs. The aim of this
paper is to obtain coincidence points of two hybrid pair of single valued and
multivalued maps for which only one pair needs to satisfy (EA) property. These
results don’t require the continuity of any map, moreover, common fixed points
of four maps are obtained under weaker condition than that, given in [17]. Our
results include the results in ([5], [11], [14], [15], [17], [18], [20] and [23]) as special
cases.

The following definitions and results will be needed in the sequel.
Let (X, d) be a metric space. For x ∈ X and A ⊆ X, d(x,A) = inf{d(x, y) :

y ∈ A}. We denote by CB(X) the class of all nonempty bounded and closed
subsets of X. Let H be a Hausdorff metric induced by the metric d of X, that
is,

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
,

for A,B ∈ CB(X).

Definition 1.1. Let f : X −→ X and T : X −→ CB(X). A point x in X is
said to be:
(1) fixed point of f if f(x) = x;
(2) fixed point of T if x ∈ T (x);
(3) coincidence point of a pair (f, T ) if fx ∈ Tx;
(4) common fixed point of a pair (f, T ) if x = fx ∈ Tx.
F (f), C(f, T ) and F (f, T ) denote set of all fixed points of f, set of all coincidence
points of the pair (f, T ) and the set of all common fixed points of the pair (f, T ),
respectively.

Definition 1.2. Maps f : X −→ X, and T : X −→ CB(X) are said to be:
(5) compatible if fTx ∈ CB(X) for all x ∈ X and H(fTxn, T fxn) → 0 when-
ever {xn} is a sequence in X such that lim

n→∞
fxn = t ∈ lim

n→∞
Txn = A ∈ CB(X).

(6) noncompatible if fTx ∈ CB(X) for all x ∈ X and there exists a sequence
{xn} in X such that lim

n→∞
fxn = t ∈ lim

n→∞
Txn = A ∈ CB(X)

but lim
n→∞

H(fTxn, T fxn) 6= 0 or nonexistent.

Definition 1.3. Let f : X −→ X, T : X −→ CB(X), and fTx ∈ CB(X). The
pair (f, T ) is called:
(7) commuting if Tfx = fTx for all x ∈ X;
(8) weakly compatible [13] if they commute at their coincidence points, that is,
fTx = Tfx whenever x ∈ C(f, T );
(9) (IT )− commuting at x ∈ X if fTx ⊆ Tfx.

Definition 1.4. Let T : X −→ CB(X). The map f : X −→ X, is said to be
T−weakly commuting at x ∈ X if f2x ∈ Tfx.
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Definition 1.5. The map f : X −→ X is said to coincidently idempotent with
respect to T : X −→ CB(X) if f2x = fx for x ∈ C(f, T ). The point x is called
point of coincident idempotency.

For example, let X = R with usual metric. Define f : X → X, and T : X →
CB(X) by

fx =

{ −1, x ≤ 0

− 2

x
, x > 0

, Tx =





{x}, x ≤ −1
[x, 1], −1 < x ≤ 1
[1, x], 1 < x < ∞

.

Here, C(f, T ) = {−1}. The map f is coincidently idempotent with respect to T.

Definition 1.6. Maps f : X −→ X, and T : X −→ CB(X) are said to satisfy
property (EA) if there exists a sequence {xn} in X, some t ∈ X, and A ∈ CB(X)
such that lim

n→∞
fxn = t ∈ A = lim

n→∞
Txn ∈ CB(X).

Now we present an example of hybrid pair {f, T} which satisfies (EA) property
and f is T−weakly commuting at some x ∈ C(f, T ).

Example 1.7. Let X = [0,∞) with usual metric. Define f : X → X, T : X →
CB(X) by

fx =

{
0, 0 ≤ x < 1
x+ 1, 1 ≤ x < ∞ and Tx =

{ {x}, 0 ≤ x < 1
[1, x+ 2], 1 ≤ x < ∞

It can be easily verified that the pair {f, T} satisfies (EA) property and f is
T−weakly commuting at x = 0 ∈ C(f, T ) = [0,∞). Moreover, F (f, T ) 6= φ.

Example 1.8. Let X = R with usual metric. Define f, g : X → X, and
T, S : X → CB(X) by

gx =

{ 2

2− x
, x < 2

0, x ≥ 2
, fx =

{ −1, x ≤ 0

−1− 2

x
, x > 0

,

Sx =

{ {x}, x ≤ −1
[1, x+ 2], −1 < x < ∞ and Tx =

{
[1, 1 + x], x > 0
[0,−x], x < 0

Consider a sequence {xn} = { 1
n
}, then lim

n→∞
gxn = 1 ∈ lim

n→∞
Sxn = [1, 2], the

pair {g, S} satisfies (EA) property. However, the pair {f, T} does not satisfy
(EA) property. Moreover, f(X) and g(X) are closed subsets of X.

Lemma 1.9 ([8]). Let A,B ∈ CB(X), then for any a ∈ A, d(a,B) ≤ H(A,B).

2. Common fixed point

The following result extends [23, Theorem 1], [15, Theorem 3] and improves
[17, Theorem 2.3].
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Theorem 2.1. Let (X, d) be a metric space, f, g : X → X, and T, S : X →
CB(X) be multivalued mappings. The pair {g, S} satisfies (EA) property, g(X) ⊆
fX and there exists, r ∈ [0, 1) such that for all x, y ∈ X,x 6= y,

H(Tx, Sy) < max{d(fx, gy), rd(fx, Tx), rd(gy, Sy), 1
2
[d(fx, Sy) + d(gy, Tx)]}. (2.1)

If f(X) and g(X) are closed subsets of X then pairs {f, T} and {g, S} have
coincidence points. Moreover, f, g, T and S have a common fixed point if f is
T−weakly commuting at x ∈ C(f, T ), g is T−weakly commuting at y ∈ C(g, T )
and f and g are coincidently idempotent with respect to the mappings T and S
respectively.

Proof. Since the pair {g, S} satisfies property (EA), there exists a sequence {xn}
in X, t ∈ X and D ∈ CB(X) such that lim

n→∞
gxn = t ∈ D = lim

n→∞
Sxn. Since,

g(X) ⊆ fX, for each xn, there exists yn in X such that fyn = gxn. Therefore,
lim

n→∞
fyn = t ∈ D = lim

n→∞
Sxn. Now closedness of f(X) and g(X) implies that

t ∈ f(X)∩g(X), there exists elements u and v in X such that t = fu and t = gv.
We claim that fu ∈ Tu. If not, then condition (2.1) implies that,

H(Tu, Sxn) < max{d(fu, gxn), rd(fu, Tu), rd(gxn, Sxn),
1

2
[d(fu, Sxn) + d(gxn, Tu)]}.

Taking limit n → ∞, we have

H(Tu,D) ≤ max{d(fu, t), rd(fu, Tu), rd(t,D),
1

2
[d(fu,D) + d(t, Tu)]}

≤ max{rd(fu, Tu), 1
2
d(fu, Tu)}.

It further implies that

d(fu, Tu) ≤ max{rd(fu, Tu), 1
2
d(fu, Tu)},

which is a contradiction. Thus fu ∈ Tu. Now we show that lim
n→∞

Tyn = D.

Otherwise, there exists a positive real number ε, positive integer N, and a sub-
sequence {Tynk

} of {Tyn} such that H(Tynk
, D) ≥ ε, for nk ≥ N. Now,

H(Tynk
, D) ≤H(Tynk

, Sxnk
) +H(Sxnk

, D)

<max{d(fynk
, gxnk

), rd(fynk
, T ynk

), rd(gxnk
, Sxnk

),

1

2
[d(fynk

, Sxnk
) + d(gxnk

, T ynk
)]}+H(Sxnk

, D).

Applying limit n → ∞,

lim
n→∞

d(Tynk
, t) ≤ lim

n→∞
H(Tynk

, D) ≤ max{r lim
n→∞

d(t, Tynk
),
1

2
lim

n→∞
d(t, Tynk

)},
that is,

lim
n→∞

d(Tynk
, t) ≤ max{r lim

n→∞
d(t, Tynk

),
1

2
lim

n→∞
d(t, Tynk

)},
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which is a contradiction. Hence lim
n→∞

Tyn = D. Now we show that gv ∈ Sv, if

not, then condition (2.1) implies that,

H(Tyn, Sv) < max{d(fyn, gv), rd(fyn, T yn), rd(gv, Sv), 1
2
[d(fyn, Sv) + d(gv, Tyn)]}.

Taking limit n → ∞, we have

H(D,Sv) ≤ max{rd(gv, Sv), 1
2
(d(gv, Sv)},

which further implies that

d(gv, Sv) ≤ max{rd(gv, Sv), 1
2
d(gv, Sv)},

which is a contradiction. Hence gv ∈ Sv. Now, we show that f, g, T and S have
a common fixed point. By assumption, f2u ∈ Tfu and g2v ∈ Sgv. Next, we
claim that u = fu. If not, then condition (2.1) implies that

H(Tu, Sfu) = H(Tu, Sgv)

< max{d(fu, g2v), rd(fu, Tu), rd(g2v, Sgv),
1

2
[d(fu, Sgv) + d(g2v, Tu)]}

=
1

2
d(fu, Sgv) ≤ 1

2
H(Tu, Sgv),

which is a contradiction and the claim follows. Similarly we obtain v = gv. If
not, then from condition (2.1), we obtain

H(Tgv, Sv) = H(Tfu, Sv)

< max{d(f2u, gv), rd(f2u, Tfu), rd(gv, Sv),
1

2
[d(f2u, Sv) + d(gv, Tgv)]}

=
1

2
d(gv, Tfu) ≤ 1

2
H(Tfu, Sv),

a contradiction. Thus f, g, T and S have a common fixed point. ¤

Example 2.2. Let X = [0,∞) with usual metric. Define f, g : X → X and
T, S : X → CB(X) by

fx =

{
0, x = 0

x
4 , 0 < x < ∞

gx =

{ x
2 , 0 ≤ x ≤ 1

2
x
3 ,

1
2 < x < ∞

and

Sx = [0,
x

10
], 0 ≤ x < ∞,

Tx = [0,
x

12
], 0 ≤ x < ∞.

Note that g(X) ⊆ fX and the pair {g, S} satisfies (EA) property. Obviously

H(Tx, Sy) =
1

2

∣∣∣x
6
− y

5

∣∣∣ .
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If x, y ∈ [0, 1
2 ] with x 6= y we have

d(fx, gy) =
1

2

∣∣∣y − x

2

∣∣∣ , d(fx, Tx) =
1

6
x, d(gy, Sy) =

2y

5

and
1

2
[d(fx, Sy) + d(gy, Tx)] ≤ 1

2

[∣∣∣x
4
− y

10

∣∣∣+
∣∣∣y
2
− x

12

∣∣∣
]
.

For x, y ∈ ( 12 ,∞) with x 6= y we obtain

d(fx, gy) =
1

3

∣∣∣∣
3x

4
− y

∣∣∣∣ , d(fx, Tx) =
1

6
x, d(gy, Sy) =

7

30
y

and
1

2
[d(fx, Sy) + d(gy, Tx)] ≤ 1

2

[∣∣∣x
4
− y

10

∣∣∣+
∣∣∣y
3
− x

12

∣∣∣
]
.

If x ∈ [0, 1
2 ] and y ∈ ( 12 ,∞) then

d(fx, gy) =
1

3

∣∣∣∣y −
3x

4

∣∣∣∣ , d(fx, Tx) =
1

6
x, d(gy, Sy) =

7

30
y

and
1

2
[d(fx, Sy) + d(gy, Tx)] ≤ 1

2

[∣∣∣x
4
− y

10

∣∣∣+
∣∣∣y
3
− x

12

∣∣∣
]
.

Finally if x ∈ ( 12 ,∞) and y ∈ [0, 1
2 ] then

d(fx, gy) =
1

2

∣∣∣x
2
− y

∣∣∣ , d(fx, Tx) =
3x

20
, d(gy, Sy) =

5y

12

and
1

2
[d(fx, Sy) + d(gy, Tx)] ≤ 1

2

[∣∣∣x
4
− y

10

∣∣∣+
∣∣∣y
2
− x

10

∣∣∣
]
.

In each case, it can be verified that (2.1) is satisfied for r =
9

10
.

Thus all the axioms of Theorem 2.1 are satisfied. Moreover 0 is the common
fixed point of f, g, S and T .

Corollary 2.3. Let (X, d) be a metric space, f, g : X → X and T, S : X →
CB(X) be multivalued mappings. The pair {g, S} is noncompatible, g(X) ⊆ fX
and there exists 0 ≤ r < 1 such that for all x, y ∈ X,x 6= y,

H(Tx, Sy) < max

{
d(fx, gy), rd(fx, Tx), rd(gy, Sy),

1

2
[d(fx, Sy) + d(gy, Tx)]

}
.

If f(X) and g(X) are closed subset of X, then pairs {f, T} and {g, S} have a
coincidence point. Moreover, if f is T−weakly commuting at x ∈ C(f, T ), g is
T−weakly commuting at y ∈ C(g, T ), and f and g are coincidently idempotent
with respect to the mappings T and S respectively, then f, g, T and S have a
common fixed point.

If we take, H = S and f = g, then corollary 2.3 extends [23, Theorem 3], to set
valued mappings.

Corollary 2.4. Let (X, d) be a metric space, f, g : X → X and T, S : X →
CB(X) be multivalued mappings. The pair {g, S} satisfies (EA) property, g(X) ⊆
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fX and

H(Tx, Sy) < hmax

{
d(fx, gy), d(fx, Tx), d(gy, Sy),

1

2
[d(fx, Sy) + d(gy, Tx)]

}
, (2.2)

for all x, y ∈ X for which x 6= y and h ∈ [0, 1). If f(X) and g(X) are closed
subset of X, then pairs {f, T} and {g, S} have coincidence points. Moreover,
f, g, T and S have a common fixed point if f is T−weakly commuting at x ∈
C(f, T ), g is T−weakly commuting at y ∈ C(g, T ) and f and g are coincidently
idempotent with respect to the mappings T and S respectively.

Proof. Since (2.2) is a special case of (2.1), the result follows immediately from
Theorem 2.1. ¤

Corollary 2.4. can be viewed as an extension of [2, Theorem 1], [9, Theorem
2]. Moreover [15, Theorem 2] become special case of Corollary, by setting S = T
and f = g.

Corollary 2.5. Let (X, d) be a metric space, f, g : X → X and T, S : X →
CB(X) be multivalued mappings, the pair {g, S} satisfies (EA) property, g(X) ⊆
fX and

H(Tx, Sy) < max

{
d(fx, gy),

1

2
[d(fx, Tx) + d(gy, Sy)],

1

2
[d(fy, Sx) + d(gx, Sy)]

}
. (2.3)

If f(X) and g(X) are closed subset of X then pairs {f, T} and {g, S} have
coincidence points. Moreover, if f is T−weakly commuting at x ∈ C(f, T ), g is
S weakly commuting at y ∈ C(g, T ) and f and g are coincidently idempotent
with respect to the mappings T and S respectively, then f, g, T and S have a
common fixed point.

Proof. f we take r ∈ ( 12 , 1), in Theorem 2.1, condition (2.3) becomes a special
case of condition (2.1). ¤

[14, Theorem 3.4] is a special case of Corollary 2.5, with f = g and T =
S. Corollary 2.5 also improves [17, Theorem 2.3] which itself generalizes many
results in the existing literature.
Let ϕ : R+ → R+ be a continuous and nondecreasing function such that 0 <
ϕ(t) < t for each t ∈ (0,∞).
The following theorem improves [17, Theorem 2.10]. Also, common fixed points
of four maps are obtained under much weaker conditions than those given in
[17].

Theorem 2.6. Let (X, d) be a metric space, f, g : X → X and T, S : X →
CB(X) be multivalued mappings. The pair {g, S} satisfies (EA) property, g(X) ⊆
fX and for all x, y ∈ X,x 6= y,

H(Tx, Sy) ≤ ϕ (max {d(fx, gy), d(fx, Tx), d(gy, Sy), d(fx, Sy), d(gy, Tx)}) . (2.4)

If f(X) and g(X) are closed subset of X then pairs {f, T} and {g, S} have
coincidence points. Moreover, f, g, T and S have a common fixed point if f is
T−weakly commuting at x ∈ C(f, T ), g is T−weakly commuting at y ∈ C(g, T )
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and f and g are coincidently idempotent with respect to the mappings T and S
respectively.

Proof. Since, the pair {g, S} satisfies property (EA), there exists a sequence
{xn} in X, t ∈ X and D ∈ CB(X) such that lim

n→∞
gxn = t ∈ D = lim

n→∞
Sxn.

Also as, g(X) ⊆ fX, for each xn, there exists yn in X such that fyn = gxn.
Therefore, lim

n→∞
fyn = t ∈ D = lim

n→∞
Sxn. As, t ∈ f(X) ∩ g(X), there exists

elements u and v in X such that t = fu and t = gv. We claim that fu ∈ Tu, if
not, then condition (2.4) implies that,

H(Tu, Sxn) ≤ ϕ(max{d(fu, gxn), d(fu, Tu), d(gxn, Sxn), d(fu, Sxn), d(gxn, Tu)}).
Taking limit n → ∞, we obtain

H(Tu,D) ≤ ϕ(max{d(fu, t), d(fu, Tu), d(t,D), d(fu,D), d(t, Tu)})
≤ ϕ(d(fu, Tu)) < d(fu, Tu).

It further implies that

d(fu, Tu) ≤ H(Tu,D) < d(fu, Tu),

a contradiction. Hence fu ∈ Tu. Now we claim that lim
n→∞

Tyn = D. Suppose not,

then there exists a positive real number ε, positive integer N , and subsequence
{Tynk

} of {Tyn} such that H(Tynk
, D) ≥ ε, for nk ≥ N. Now,

H(Tynk
, D) ≤ H(Tynk

, Sxnk
) +H(Sxnk

, D)

< ϕ(max{d(fynk
, gxnk

), d(fynk
, Tynk

), d(gxnk
, Sxnk

),

d(fynk
, Sxnk

), d(gxnk
, T ynk

)}) +H(Sxnk
, D),

which, on taking limit n → ∞ implies that,

lim
n→∞

d(Tynk
, t) ≤ lim

n→∞
H(Tynk

, D) ≤ ϕ( lim
n→∞

d(t, Tynk
) < lim

n→∞
d(t, Tynk

),

which is a contradiction. Hence lim
n→∞

Tyn = D. Now we show that gv ∈ Sv, if

not, then condition (2.4) gives,

H(Tyn, Sv) < ϕ(max{d(fyn, gv), d(fyn, T yn), d(gv, Sv), d(fyn, Sv), d(gv, Tyn)}).
Taking limit n → ∞, we have

H(D,Sv) ≤ ϕ(d(gv, Sv)).

It further implies that

d(gv, Sv) ≤ ϕ(d(gv, Sv)) < d(gv, Sv),

which is a contradiction. Hence gv ∈ Sv. Thus, there exists points u, v in X
such that fu ∈ Tu, gv ∈ Sv. Next, we claim that u = fu. If not, then condition
(2.4) implies that

H(Tu, Sfu) = H(Tu, Sgv)

< ϕ(max{d(fu, g2v), d(fu, Tu), d(g2v, Sgv), d(fu, Sgv), d(g2v, Tu)}
≤ ϕ(d(fu, Sgv)) ≤ ϕ(H(Tu, Sgv)) < H(Tu, Sgv),
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which is a contradiction. Hence the claim follows. Similarly we show that v = gv.
If not, then condition (2.4) implies that

H(Tgv, Sv) = H(Tfu, Sv)

< ϕ(max{d(f2u, gv), d(f2u, Tfu), d(gv, Sv), d(f2u, Sv), d(gv, Tfu)}
= ϕ(d(fu, Sv)) ≤ ϕ(H(Tfu, Sv)) < H(Tfu, Sv),

again a contradiction. Thus f, g, T and S have a common fixed point. ¤
Example 2.7. Let X = [0,∞) with usual metric. Define f, g : X → X, and
T, S : X → CB(X) by

fx =
x

3
, gx =

x

2
, Sx = [0,

x

8
] and Tx = [0,

x

10
].

Define ϕ : R+ → R+ by ϕ(t) =
9t

10
. Note that g(X) ⊆ fX and the pair {g, S}

satisfies (EA) property.
Now for x, y ∈ [0,∞) with x 6= y we have

H(Tx, Sy) =
1

2

∣∣∣x
5
− y

4

∣∣∣ , d(fx, gy) =
∣∣∣x
3
− y

2

∣∣∣ , d(fx, Tx) =
7

30
x,

d(gy, Sy) =
3

8
y, d(fx, Sy) =

∣∣∣x
3
− y

8

∣∣∣ , and d(gy, Tx) =
1

2

∣∣∣y − x

5

∣∣∣ .
If x > y, then

H(Tx, Sy) <
9

10

(
7

30
x

)
= ϕ

(
7

30
x

)
.

And, if x < y,

H(Tx, Sy) <
1

8
y <

9

10

(
3

8
y

)
= ϕ

(
3

8
y

)
.

Thus, in each case

H(Tx, Sy) ≤ ϕ(max{d(fx, gy), d(fx, Tx), d(gy, Sy), d(fx, Sy), d(gy, Tx)})
is satisfied. Hence all the axioms of Theorem 2.6 are satisfied. Moreover 0 is
the common fixed point of f, g, S and T .
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