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CONTROLLABILITY OF STOCHASTIC FUNCTIONAL

INTEGRODIFFERENTIAL EVOLUTION SYSTEMS

J. KOKILA∗ AND K. BALACHANDRAN

Abstract. In this paper, we prove the existence and uniqueness of mild
solution for stochastic functional integrodifferential evolution equations and
derive sufficient conditions for the controllability results. As an illustration
we consider the controllability for a system governed by a random motion
of a string.
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1. Introduction

The purpose of this paper is to study the controllability of stochastic func-
tional integrodifferential evolution equations of the form

dXt =

[
AXt + F

(
t,Xt,

∫ t

0

h(t, s,Xs)ds

)
+Bu(t)

]
dt

+G

(
t,Xt,

∫ t

0

k(t, s,Xs)ds

)
dWt, t ∈ [0, T ] := J

(1)

X0 = x0 (2)

defined on a Hilbert space H and where A is a linear unbounded operator,
F,G, h, k are nonlinear functions defined later. Wt is a cylindrical Wiener process
and x0 ∈ H. The state variable x(·) takes its values in the Hilbert space H.
The control function u(·) is in L2(J ;U), the Hilbert space of admissible control
functions with U a Hilbert space. B is a bounded linear operator from U into
H.
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The present work may be regarded as a direct attempt to extend the recent
paper Jentzen and Kloeden [11]. In that paper, the authors proved the existence
and uniqueness of the following stochastic evolution equations in a unified way

dXt = [AXt + F (Xt)]dt+B(Xt)dWt,

X0 = x0.

A complete understanding of stochastic differential equations theory requires
familiarity with advanced probability and stochastic processes. By incorporating
random elements in the differential equation (either in the initial or boundary
conditions for the problem or in the function describing the physical system) a
stochastic differential equation arises. Physical systems are often modelled by
ordinary differential equations, however such models may represent idealised sit-
uations as they ignore stochastic effects. Stochastic differential equation models
play a prominent role in a range of application areas, including biology, chem-
istry, epidemology, mechanics, microelectronics, economics and finance.

For example, consider the velocity of a particle Xt in a direction represented
by the Langevin equation

dXt

dt
= −aXt + bξt,

where aXt denotes the velocity depending force and bξt the molecular force
with intensity b driven by a white noise process ξt. In this stochastic model, it
is assumed that external forces do not depend on the state Xt of the system.
Symbolically, the above equation is written as stochastic differential equation of
the form

dXt = −aXtdt+ bWt,

which is a short-hand notation of the integral equation

Xt = X0 −
∫ t

0

aXsds+

∫ t

0

bdWs.

The mild solution of such integral equations are in the form of stochastic integral
equations. The solution of a stochastic differential equations however, inherits
the nondifferentiability of sample paths from the stochastic process. Mathe-
matical modelling of real life problems usually results in functional equations,
such as ordinary or partial differential equations, integrodifferential equations
and stochastic equations. The functional integrodifferential equations serve as
an abstract formulation of partial functional integrodifferential equations which
arise in heat flow in material with memory (see, [12]). The theory of stochastic
evolution equations encounter all of difficulties due to the infinite dimensional
nature of the noise processes. In many problems in almost all areas of science and
engineering there are real phenomena depending on the effect of white noise ran-
dom forces. These problems are intrinsically nonlinear, complex in nature and
atleast mathematically modelled and described by various generalized stochastic
differential and integrodifferential equations.
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The stochastic control theory is a generalization of the classical control theory.
Controllability of nonlinear stochastic systems has been a well-known problem
and frequently discussed in the literature (Aström [1], Wonham [17], Zabczyk
[18], Balasubramaniam et. al [7]. Dauer and Mahmudov [10], Mahmudov [13]
investigated various controllability questions for semilinear stochastic differential
equations. Stochastic controllability results for both semilinear and quasilinear
evolution equations has been studied by Balasubramaniam [5, 6]. Much effort
has been devoted to the study of controllability for stochastic integrodifferen-
tial equations in both finite and infinite dimensional settings. Balachandran
and Karthikeyan [2], Balachandran et. al [3,4] derived sufficient conditions for
the controllability of stochastic integrodifferential systems in finite dimensional
spaces whereas, Subalakshmi and Balachandran [16] studied controllability of
the following functional integrodifferential system in infinite dimensional spaces

d(X(t)) =

[
−AX(t) +Bu(t) + f

(
t,Xt,

∫ t

0

g(t, s,Xs)ds

)]
dt

+σ

(
t,Xt,

∫ t

0

g(t, s,Xs)ds

)
dW (t), t ∈ [0, T ]

X0 = Φ.

This paper deals with the K-valued Wiener process with a finite trace nuclear
operator Q ≥ 0 and the results are obtained by using Banach fixed point theo-
rem.

In the present work, we deal with the cylindrical Q-Wiener process with the
co-variance operator Q = I, the identity ( see, for example [8, 11, 14] ).

The outline of the paper is as follows: section 2 describes the notations, terms
and conditions of the problem. Section 3 is devoted to the development of our
main controllability results. Finally, section 4 concludes by giving an application
to the controllability problem for a system with distributed parameters governed
by the random motion of a string under the action of controls.

2. Preliminaries

Fix T > 0. Let (Ω,F ,P) be a probability space with a normal filtration Ft,
t ∈ J . An H-valued random variable is an F-measurable function Xt : Ω → H
and a collection of random variables S = {X(t, w) : Ω → H |t ∈ J} is called a
stochastic process. Usually we suppress the dependence on w ∈ Ω and write Xt

instead of X(t, w) and Xt : J → H in the place of S. Let (H, 〈·, ·〉H), (V, 〈·, ·〉V )
be two separable R-Hilbert spaces with norm denoted by ‖·‖H , ‖·‖V respectively.
Let (D, ‖·‖D) be a separable R-Banach space of all bounded linear operator from
V to D. Wt, t ∈ J is a cylindrical Q-Wiener process on V with respect to Ft,
t ∈ J for which the co-variance operator Q = I the identity on V (see [8, 14] ).
Let us assume the following hypothesis on the data of the problem :

(H1) Let I be a finite or countable set. Moreover, let (λi)i∈I be a family of
positive real numbers with inf

i∈I
λi > 0 and let (ei)i∈I be an orthonormal
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basis of H. Then, suppose that the linear operator A : D(A) ⊂ H → H
is given by

Av =
∑

i∈I
(−λi)〈ei, v〉Hei,

for all v ∈ D(A) with D(A) =

{
v ∈ H;

∑

i∈I
‖λi‖2|〈ei, v〉H |2 < ∞

}
.

(H2) The mapping F : J ×H ×H → H is globally Lipschitz continuous with
respect to ‖ · ‖H with the function h : J × J ×H → H such that

‖F (t, v, v1)− F (t, w,w1)‖H ≤ L[‖v − w‖H + ‖v1 − w1‖H ]∥∥∥∥
∫ t

0

[h(t, s, v)− h(t, s, w)]ds

∥∥∥∥
H

≤ L1‖v − w‖H

where v, v1, w, w1 ∈ H and L,L1 < 0.

Let D((−A)m), m ∈ R, denote the interpolation spaces of powers of
the operator −A (see, [9, 15]) and let ‖ ·‖HS denote the Hilbert-Schmidt
norm for Hilbert-Schmidt operator from V to H.

(H3) Suppose that D ⊂ D((−A)m) continuously for some m ≥ 0 and that
G : J×H×H → L(V,D) with k : J×J×H → H is a strongly measurable
mapping such that eAtG(t, v, w) is a Hilbert-Schmidt operator from V
to H and

‖eAtG(t, v, w)‖HS ≤ M [1 + ‖v‖H + ‖w‖H ]tε−1/2

‖eAt[G(t, v, v1)−G(t, w,w1)]‖HS ≤ M [‖v − w‖H + ‖v1 − w1‖H ]tε−1/2

∥∥∥∥
∫ t

0

[k(t, s, v)− k(t, s, w)]ds

∥∥∥∥
H

≤ M1‖v − w‖H

for all v, v1, w, w1 ∈ H, t ∈ J and M,M1 > 0 are given constants.

IfG : J×H×H → L(V,D) is assumed to be B(J×H×H)\B(L(V,D))-
measurable, then in particular, it is strongly measurable.

(H4) Let p ∈ [2,∞) be given and suppose that x0 : Ω → H is a F0\B(H)-
measurable mapping with E‖x0‖pH < ∞.

(H5) The linear operator W : L2(J, U) → H is defined by

Wu =

∫ T

0

eA(t−s)Bu(s)ds

has an invertible operator W−1 defined on H\KerW and there exists a
positive constant C1 such that

‖BW−1‖ ≤ C1.
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Suppose the hypothesis (H1)− (H4) are satisfied then the stochastic process

Xt = eAtx0 +

∫ t

0

eA(t−s)F

(
s,Xs,

∫ s

0

h(s, τ,Xτ )dτ

)
ds+

∫ t

0

eA(t−s)Bu(s)ds

+

∫ t

0

eA(t−s)G

(
s,Xs,

∫ s

0

k(s, τ,Xτ )dτ

)
dWs, almost surely for t ∈ J,

defined on the probability space (Ω,F ,P) is said to be mild solution in H of
equation (1) for a given initial value x0.

Definition 1. The system (1) - (2) is said to be controllable on the interval J if
for every x1 ∈ H there exists a control u ∈ L2(J, U) such that the mild solution
Xt of (1) satisfies XT = x1.

Let (V, ‖ · ‖) be a normed vector space and denote the Lq norm for q ∈
[1,∞) of a F\(V)-measurable mapping z : Ω → V by ‖z‖Lq := (E‖z‖q)1/q. We
need the following version of the Burkholder-Davis-Gundy inequality in infinite
dimensions.

Lemma 1. Let Xt : Ω → HS(V,H) be a predictable stochastic process with

E
∫ T

0
‖Xs‖2HSds < ∞. Then, we obtain

∥∥∥∥
∫ t

0

XsdWs

∥∥∥∥
Lq

≤ q

(∫ t

0

‖‖Xs‖HS‖2Lqds

)1/2

for every t ∈ J and every q ∈ [2,∞). Both sides could be infinite.

3. Controllability results

Theorem 1. Let (H1)− (H5) be satisfied. Then, there is a unique (upto mod-
ifications) predictable stochastic process Xt : Ω → H with sup

0≤t≤T
E‖Xt‖pH <∞,

where p ≥ 2 is given in Assumption (H4) such that

P





Xt=eAtx0 +

∫ t

0

eA(t−s)F

(
s,Xs,

∫ s

0

h(s, τ,Xτ )dτ

)
ds

+

∫ t

0

eA(t−s)Bu(s)ds+

∫ t

0

eA(t−s)G

(
s,Xs,

∫ s

0

k(s, τ,Xτ )dτ

)
dWs




=1 (3)

for all t ∈ J . Furthermore, Xt is the unique mild solution of (1) in this sense
and hence the system (1)-(2)is controllable.

Proof. Let p ≥ 2 be given by the assumption (H4). First, we introduce the
R-vector space γp of all equivalence classes of predictable stochastic processes
Xt : Ω → H with sup

0≤t≤T
‖Xt‖Lp < ∞, where all stochastic processes that are

modifications of each other lie in one equivalence class. Then, we equip this
space with the norm ‖X‖µ := sup

0≤t≤T
eµt‖Xt‖Lp for every X ∈ γp and every
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µ ∈ R. Note that the pair (γp, ‖ · ‖µ) is a Banach space for every µ ∈ R. Now,
we consider the mapping Φ : γp → γp given by

(ΦX)t = eAtx0+

∫ t

0

eA(t−s)F

(
s,Xs,

∫ s

0

h(s, τ,Xτ )dτ

)
ds+

∫ t

0

eA(t−s)Bu(s)ds

+

∫ t

0

eA(t−s)G

(
s,Xs,

∫ s

0

k(s, τ,Xτ )dτ

)
dWs, t ∈ J, X ∈ γp.

Define the control,

u(t) = W−1

[
x1 − eATx0 −

∫ T

0

eA(T−s)F

(
s,Xs,

∫ s

0

h(s, τ,Xτ )dτ

)
ds

−
∫ T

0

eA(T−s)G

(
s,Xs,

∫ s

0

k(s, τ,Xτ )dτ

)
dWs

]
(s).

We have

(ΦX)t := eAtx0 +

∫ t

0

eA(t−s)F

(
s,Xs,

∫ s

0

h(s, τ,Xτ )dτ

)
ds

+

∫ t

0

eA(t−s)G

(
s,Xs,

∫ s

0

k(s, τ,Xτ )dτ

)
dWs

+

∫ t

0

eA(t−s)BW−1

[
x1 − eATx0

−
∫ T

0

eA(T−s)F

(
s,Xs,

∫ s

0

h(s, τ,Xτ )dτ

)
ds

−
∫ T

0

eA(T−s)G

(
s,Xs,

∫ s

0

k(s, τ,Xτ )dτ

)
dWs

]
(s)ds.

Step 1. Φ well-defined.
Given t ∈ J and X ∈ γp, the mapping from J × Ω to HS(V,H) defined

by (s, ω) → eA(t−s)G(s,Xs(ω),

∫ s

0

k(s, τ,Xτ )dτ) for every s ∈ J , ω ∈ Ω is a

predictable stochastic process, since eAs is continuous in L(D,H) for s ∈ (0, T ]
and G(·, v, w) is strongly measurable by (H3). Hence
∥∥∥∥
∫ t

0

eA(t−s)G(s,Xs, X
′
s)dWs

∥∥∥∥
Lp

≤ p

(∫ t

0

‖‖eA(t−s)G(s,Xs, X
′
s)‖HS‖2Lpds

)
1/2

≤ p

(∫ t

0

‖M(1+‖Xs‖H+‖X ′
s‖H)(t− s)ε−1/2‖2Lpds

)
1/2

≤ Mp

(∫ t

0

[1 + ‖Xs‖H(1 +M1)]
2(t− s)2ε−1ds

)1/2
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due to Lemma(1) and (H3), we obtain
∥∥∥∥
∫ t

0

eA(t−s)G(s,Xs, X
′
s)dWs

∥∥∥∥
Lp

≤Mp

(
1+ sup

0≤s≤T
‖Xs‖LP

(1 +M1)

)(∫ t

0

s2ε−1ds

)
1/2

≤ Mp√
2ε

tε
(
1 +

[
sup

0≤s≤T
‖Xs‖Lp

]
(1 +M1)

)

<∞.

By Lebesgue’s theorem,

∫ t

0

eA(t−s)G(s,Xs, X
′
s)dWs for t ∈ [0, T ] is mean square

continuous. Hence, it has a predictable version. Similarly,
∥∥∥∥
∫ t

0

eA(t−s)F (s,Xs, X
′
s)ds

∥∥∥∥
Lp

≤
∫ t

0

‖eA(t−s)F (s,Xs, X
′
s)‖Lpds

≤ sup
0≤s≤T

‖eAs‖L(H,H)

∫ t

0

‖F (s,Xs, X
′
s)‖Lpds

≤ sup
0≤s≤T

‖eAs‖L(H,H)

∫ t

0

L[1+ ‖Xs‖Lp +‖X ′
s‖Lp)]ds

≤
∫ t

0

L[1 + ‖Xs‖Lp + L1‖Xs‖Lp)]ds

≤ L

[
1 +

(
sup

0≤s≤T
‖Xs‖Lp

)
(1 + L1)

]
t

< ∞.

And hence,

‖(ΦX)t‖Lp

≤ Mp√
2ε

[
1 +

(
sup

0≤s≤T
‖Xs‖Lp

)
(1 +M1)

]
tε+ L

[
1 +

(
sup

0≤s≤T
‖Xs‖Lp

)
(1 +L1)

]
t

+

∫ t

0

∥∥∥∥eA(T−s)BW−1

{
x1 − eATx0 − L

[
1 +

(
sup

0≤s≤T
‖Xs‖Lp

)
(1 + L1)

]
t

−Mp√
2ε

[
1 +

(
sup

0≤s≤T
‖Xs‖Lp

)
(1 +M1)

]
tε
}
(s)ds

< ∞.

Hence Φ is well defined.
Step 2. Φ is contraction. For X,Y ∈ γp, t ∈ [0, T ] we obtain,

(ΦX)t − (ΦY )t

=

∫ t

0

eA(t−s)[F (s,Xs, X
′
s)− F (s, Ys, Y

′
s )]ds
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+

∫ t

0

eA(t−s)[G(s,Xs, X
′
s)−G(s, Ys, Y

′
s )]dWs

+

∫ t

0

eA(t−s)BW−1

[ ∫ T

0

eA(T−s)[F (s, Ys, Y
′
s )− F (s,Xs, X

′
s)]ds

+

∫ T

0

eA(T−s)[G(s, Ys, Y
′
s )−G(s,Xs, X

′
s)]dWs

]
(s)ds

‖(ΦX)t − (ΦY )t‖Lp

≤
∫ t

0

‖eA(t−s)[F (s,Xs, X
′
s)− F (s, Ys, Y

′
s )]‖Lpds

+

∫ t

0

‖eA(t−s)[G(s,Xs, X
′
s)−G(s, Ys, Y

′
s )]‖LpdWs

+

∫ t

0

∥∥∥∥eA(t−s)BW−1

[ ∫ T

0

eA(T−s)[F (s, Ys, Y
′
s )− F (s,Xs, X

′
s)]ds

+

∫ T

0

eA(T−s)[G(s, Ys, Y
′
s )−G(s,Xs, X

′
s)]dWs

]
(s)

∥∥∥∥
Lp

ds

≤ L sup
0≤s≤T

‖eA(t−s)‖L(H,H)

(∫ t

0

(‖Xs −X ′
s)‖Lp + (‖Ys − Y ′

s )‖Lp)ds

)

+p

(∫ t

0

∥∥∥∥‖eA(t−s)[G(s,Xs, X
′
s)−G(s, Ys, Y

′
s )]‖HS

∥∥∥∥
2

Lp

ds

)1/2

+

(
sup

0≤s≤T
‖eA(t−s)‖L(H,H)

)

(∫ t

0

∥∥∥∥BW−1

[ ∫ T

0

eA(T−s)[F (s, Ys, Y
′
s )− F (s,Xs, X

′
s)]ds

+

∫ T

0

eA(T−s)[G(s, Ys, Y
′
s )−G(s,Xs, X

′
s)]dWs

]
(s)

∥∥∥∥
Lp

ds

)

≤ L

(∫ t

0

e−µs(1 + L1)‖Xs − Ys‖LP eµsds

)

+p

(∫ t

0

∥∥∥∥M(t− s)ε−1/2[‖Xs − Ys‖H + ‖X ′
s − Y ′

s‖H ]

∥∥∥∥
2

Lp

ds

)1/2

+‖BW−1‖
∫ T

0

‖eA(t−s)[F (s,Xs, X
′
s)− F (s, Ys, Y

′
s )]‖Lpds

+‖BW−1‖
∫ T

0

‖eA(t−s)[G(s,Xs, X
′
s)−G(s, Ys, Y

′
s )]‖LpdWs

≤
(
L(1 + L1)‖X − Y ‖µ + C1L(1 + L1)‖X − Y ‖µ

)(∫ T

0

e−µsds

)
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+p

(∫ t

0

∥∥∥∥M(1 +M1)(t− s)ε−1/2‖Xs − Ys‖H
∥∥∥∥
2

Lp

ds

)1/2

+pC1

(∫ T

0

∥∥∥∥M(1 +M1)(t− s)ε−1/2‖Xs − Ys‖H
∥∥∥∥
2

Lp

ds

)1/2

.

For µ ∈ R by Lemma(1), this yields

eµt‖(ΦX)t − (ΦY )t‖Lp

≤ L(1 + L1)‖X − Y ‖µ
(∫ t

0

eµ(t−s)ds

)

+C1L(1 + L1)‖X − Y ‖µ
(∫ T

0

eµ(t−s)ds

)

+Mp(1 +M1)

(∫ t

0

(t− s)2ε−1e2µ(t−s)ds

)1/2

‖X − Y ‖µ

+MpC1(1 +M1)

(∫ T

0

(t− s)2ε−1e2µ(t−s)ds

)1/2

‖X − Y ‖µ

≤ L(1 + L1)‖X − Y ‖µ
(∫ t

0

eµsds

)

+C1L(1 + L1)‖X − Y ‖µ
(∫ T

0

eµsds

)

+Mp(1 +M1)‖X − Y ‖µ
√∫ t

0

(t− s)2ε−1e2µ(t−s)ds

+MpC1(1 +M1)‖X − Y ‖µ
√∫ T

0

(t− s)2ε−1e2µ(t−s)ds,

for every µ > 0, t ∈ J . Hence,

‖ΦX − ΦY ‖µ ≤ L

|µ| (1 + L1)(1 + C1)‖X − Y ‖µ

+

(
Mp(1 +M1)(1 + C1)

√∫ T

0

(t− s)2ε−1e2µ(s)ds

)
‖X − Y ‖µ

‖ΦX − ΦY ‖µ ≤
[
L

|µ| (1 + L1)(1 + C1)

+Mp(1 +M1)(1 + C1)

√∫ T

0

(t− s)2ε−1e2µ(s)ds

]
‖X − Y ‖µ,

for every µ > 0.
Finally, for µ → −∞, we see that Φ is contraction with respect to ‖ · ‖µ, so

there is a unique element X ∈ γp with X = ΦX. Hence Xt is the unique mild
solution of (1) and the system(1)-(2) is controllable. ¤
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Finally, we also obtain the following regularity result of the solution if further
assumption on eAtG(·, ·, ·) are satisfied.

Theorem 2. Let Assumption (H1)− (H5) be satisfied and let ν ∈ (0, 1) be such
that E‖(−A)νx0‖pH < ∞. Furthermore, suppose that (−A)νeAtG(t, v, w) is a
Hilbert-Schmidt operator from V to H with

‖(−A)νeAtG(t, v, w)‖HS ≤ L(1 + ‖v‖H + ‖w‖H)tε−1/2

for all v, w ∈ H and all t ∈ J with constants L, ε > 0. Then, the unique
solution process Xt : Ω → H of the equation(1) given by the Theorem(1) satisfies
sup

0≤t≤T
E‖(−A)νXt‖pH < ∞.

Proof. The solution process Xt satisfies

P





Xt=eAtx0 +

∫ t

0

eA(t−s)F

(
s,Xs,

∫ s

0

h(s, τ,Xτ )dτ

)
ds

+

∫ t

0

eA(t−s)Bu(s)ds+

∫ t

0

eA(t−s)G

(
s,Xs,

∫ s

0

k(s, τ,Xτ )dτ

)
dWs




=1

for every t ∈ J . Consider,

‖I1‖ = ‖(−A)νeAtx0‖Lp = ‖eAt(−A)νx0‖Lp = ‖(−A)νx0‖Lp < ∞
for every t ∈ J , where p ≥ 2 is given in (H4).

‖I2‖ =

∥∥∥∥(−A)ν
∫ t

0

eA(t−s)F (s,Xs, X
′
s)ds

∥∥∥∥
Lp

≤
∫ t

0

‖(−A)νeA(t−s)F (s,Xs, X
′
s)‖Lpds

≤
∫ t

0

‖(−A)νeA(t−s)‖L(H,H)‖F (s,Xs, X
′
s)‖Lpds

≤
∫ t

0

(t− s)−νL(1 + ‖Xs‖Lp + ‖X ′
s‖Lp)ds

≤
∫ t

0

(t− s)−νL(1 + ‖Xs‖Lp(1 + L1))ds

< ∞
for t ∈ J , we used the fact that ‖F (t, v, w)‖H ≤ L(1 + ‖v‖ + ‖w‖) with∥∥∥∥
∫ t

0

h(t, s, v)ds

∥∥∥∥ ≤ L1(‖v‖), for all v, w ∈ H with constants L,L1 > 0.

‖I3‖ =

∥∥∥∥(−A)ν
∫ t

0

eA(t−s)F (s,Xs, X
′
s)ds

∥∥∥∥
Lp

≤ L

(
1 + (1 + L1) sup

0≤s≤T
‖Xs‖Lp

)(∫ t

0

s−νds

)
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≤ L
t1−ν

1− ν

(
1 + (1 + L1) sup

0≤s≤T
‖Xs‖Lp

)

≤ L(T + 1)

1− ν

(
1 + (1 + L1) sup

0≤s≤T
‖Xs‖Lp

)

< ∞, for every t ∈ J.

‖I4‖ =

∥∥∥∥(−A)ν
∫ t

0

eA(t−s)G(s,Xs, X
′
s)dWs

∥∥∥∥
Lp

≤ p

(∫ t

0

∥∥∥∥‖(−A)νeA(t−s)G(s,Xs, X
′
s)‖HS

∥∥∥∥
2

Lp

ds

)1/2

≤ p

(∫ t

0

∥∥∥∥M(1 + ‖Xs‖H + ‖X ′
s)‖H(t− s)(ε−1/2)

∥∥∥∥
2

Lp

ds

)1/2

≤ p

(∫ t

0

∥∥∥∥M(1 + ‖Xs‖H +M1‖Xs)‖H(t− s)(ε−1/2)

∥∥∥∥
2

Lp

ds

)1/2

≤ Mp

(
1 + sup

0≤s≤T
‖Xs‖H(1 +M1)

)(∫ t

0

s(2ε−1)ds

)1/2

≤ Mp
T ε

√
2ε

(
sup

0≤s≤T
‖Xs‖H(1 +M1)

)

< ∞, for all t ∈ J.

Finally, we obtain the last term, by using ‖I2‖ − ‖I4‖ and (H5)

‖I5‖ =

∥∥∥∥(−A)ν
∫ t

0

eA(t−s)Bu(s)ds

∥∥∥∥
Lp

< ∞.

Hence by using Lemma(1) and [8] which yields the assertation. ¤

4. Example

Consider a string fixed at the end points x = 0 and x = 1. The string moves
randomly by the three forces such as, external forces, random forces driven by
(Gaussian) white noise type and the elastic force. The external forces and the
random forces are given by f(Xt(x), X

′
t(x)) : R× R→ R and g(Xt(x), X

′′
t (x)) :

R×R→ R and the modulus of the elasiticity is given by positive constant κ > 0.
x is the parameter of the string. We assume that the control influence upon the
random motion is the ‘absolute’ control and it is defined by a bounded linear
operator B : U → L2[Rd,R], d ∈ N.
We can describe this stochastic model by the following equations

dXt(x) =

[
κ

2
∆Xt(x) + f(Xt(x), X

′
t(x)) +Bu(t)

]
dt

+ g(Xt(x), X
′′
t (x))dWt, t ∈ [0, T ] := J

(4)

X0(x) = x0. (5)
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The question of controllability for the above system now can be formulated as
follows: is it possible to steer the string to the motionless state at time T.
Let us consider O := (0, 1)d = Rd with d ∈ N and H = L2[O ,R], the Hilbert

space with scalar product and the norm 〈v, w〉H =

∫

O

v(x)w(x)dx for every

v, w ∈ R. We also define V := H, moreover A = ν∆ where ν = κ/2 with
ν > 0 (i.e., κ/2 > 0 ) be constant times the Laplacian with Dirichlet boundary
conditions. For I = Nd,

ei(x) = 2d/2
d∏

j=1

sin(ijπxj)

λi = νπ2
d∑

j=1

i2j

for all x = (x1, x2, ..., xd) ∈ O and i = (i1, i2, ..., id) ∈ I.
Then the operator A is given by Af =

∑

i∈I
−λi〈ei, f〉Hei, for all f ∈ D(A) with

D(A) =

{
f ∈ H :

∑

i∈I
λ2
i |〈ei, f〉H |2 < ∞

}
.

Hence Assumption (H1) holds.
Now, let f, g : R×R→ R be two globally Lipschitz continuous functions in the
sense that

|f(x, x1)− f(y, y1)| ≤ L[|x− y|+ |x1 − y1|]
|g(x, x2)− g(y, y2)| ≤ M [|x− y|+ |x2 − y2|]

for all x, x1, x2, y, y1, y2 ∈ R with a constant L,M > 0. Now define F (v, w) :
H ×H → H and ζ(v, w1) : H ×H → H by

F (v, w)(x) = f(v(x), w(x)) (6)

ζ(v, w1)(x) = g(v(x), w1(x)) (7)

for all v, w,w1 ∈ H,x ∈ (0, 1)d. Hence F and ζ are globally Lipschitz continuous
with respect to ‖.‖H with the function h, k : J × J ×H → H such that

‖F (v, v1)− F (w,w1)‖H ≤ L[‖v − w‖H + ‖v1 − w1‖H ] ; with∥∥∥∥
∫ t

0

[h(t, s, v)− h(t, s, w)]ds

∥∥∥∥ ≤ L1‖v − w‖H
‖ζ(v, v2)− ζ(w,w2)‖H ≤ M [‖v − w‖H + ‖v2 − w2‖H ] ; with∥∥∥∥

∫ t

0

[k(t, s, v)− k(t, s, w)]ds

∥∥∥∥ ≤ M1‖v − w‖H
where v, w, v1, v2, w1, w2 ∈ H and L,L1,M,M1 > 0. Hence Assumption (H2)
holds.
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Let d ∈ I and D := H. Let {fi}i∈I be another orthonormal basis in H with the
property that fi : O → R are continuous functions which satisfy

sup
i∈I

sup
x∈O

|fi(x)| < ∞. (8)

Then, we define G by

G : H ×H → L(H,D), (G(v, v1)(w))(x)) := (ζ(v, v1))(x).(w)(x) (9)

for every x ∈ O and v, v1, w ∈ H. Indeed, G is well defined, since, by the
Cauchy-Schwartz inequality,

‖G(v, v1)(w)‖D ≤
∫

O

|ζ(v, v1)(x).w(x)|dx

≤
(∫

O

|ζ(v, v1)(x)|2dx
)1/2(∫

O

|w(x)|2dx
)1/2

= ‖ζ(v, v1)‖H‖w‖H
for all v, v1, w ∈ H, therefore G(v, v1) is a bounded linear operator from H to
D with the property

‖G(v, v1)‖L(H,D) ≤ ‖ζ(v, v1)‖H , for all v, v1 ∈ H.

Since ζ is globally Lipschitz continuous, we have G is also a globally Lipschitz
continuous from H to L(H,D) and is measurable, in the sense that

‖G(v, v1)−G(w,w1)‖ ≤ ‖ζ(v, v1)− ζ(w,w1)‖H
≤ M [‖v − w‖H + ‖v1 − w1‖H ].

Combining the definitions in (7)-(9), we obtain

G : H ×H → L(H,D), (G(v, v1)(w))(x) := g(v(x), v1(x)).w(x)

for all x ∈ (0, 1)d and v, v1, w ∈ H.
Let ν ∈ [0, 1), we have (−A)νeAtG(v, v1) is a linear bounded operator from H
to D = H and hence

‖(−A)νeAtG(v, v1)‖HS ≤ ‖(−A)eAt‖L(H,H)‖G(v, v1)‖HS

≤ t−ν

(
sup
i∈I

‖G(v, v1)(fi)‖2H
)1/2

≤ t−ν

(
sup
i∈I

‖ζ(v, v1)‖
)(

sup
i∈I

sup
x∈O

|fi(x)|
)

≤ C‖ζ(v, v1)‖Ht−ν

for all v, v1 ∈ H and all t ∈ [0, T ] and by using equation(8), where the constant
C > 0. Hence, we obtain

‖(−A)νeAtG(v, v1)‖HS ≤ C‖ζ(v, v1)‖Ht−ν
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for every v, v1 ∈ H, t ∈ (0, T ] and ν ∈ [0, 1). In the same way, we can show that

‖(−A)νeAt[G(v, v1)−G(w,w1)]‖HS ≤ C‖ζ(v, v1)− ζ(w,w1)‖Ht−ν .

Thus, Assumption (H3) holds.
Now we can formulate our controlled system governed by the stochastic func-
tional integrodifferential evolution equation in the Hilbert space H of the form

dXt =

[
AXt+ F

(
Xt,

∫ t

0

h(t, s,Xs)ds

)
+Bu(t)

]
dt

+G

(
Xt,

∫ t

0

k(t, s,Xs)

)
dWt, t ∈ [0, T ] := J

(10)

X0 = x0 (11)

where Wt is cylindrical Wiener process.9
(A) The control operator B ∈ L(U,H) defined on the Hilbert space U is surjec-
tive then the corresponding linear system is controllable and hence there exists
the inverse W−1 for the control operator W : L2(J : U) → H by

W (u) =

∫ T

0

eA(t−s)Bu(s)ds

Finally, if the initial value satisfies the condition (H4), then the system (4)-
(5) has a unique solution by Theorem(1) and with the choice of (A), the given
system (4)-(5) is controllable.
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