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A MODIFIED NONMONOTONE FILTER TRUST REGION

METHOD FOR SOLVING INEQUALITY CONSTRAINED

PROGRAMMING†
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Abstract. SQP method is one of the most important methods for solving
nonlinear programming. But it may fail if the quadratic subproblem is
inconsistent. In this paper, we propose a modified nonmonotone filter trust
region method in which the QP subproblem is consistent. By means of
nonmonotone filter, this method has no demand on the penalty parameter
which is difficult to obtain. Moreover,the restoration phase is not needed
any more. Under reasonable conditions, we obtain the global convergence
of the algorithm. Some numerical results are presented.
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1. Introduction

Consider the following nonlinear inequality constrained optimization prob-
lem(NLP):

min f(x)

s.t. ci(x) ≤ 0, i ∈ I = {1, 2, ...,m} (1)

where f : Rn → R and C(x) = (c1(x), c2(x), ..., cm(x))T : Rn → Rm are con-
tinuously differentiable functions. For convenience, let g(x) = ∇f(x), A(x) =
(∇c1(x),∇c2(x), ...,∇cm(x)). And fk refers to f(xk), Ck to C(xk), gk to g(xk)
and Ak to A(xk), etc.

The nonlinear programming problem (1), arising often in engineering, econ-
omy and many fields in the society, is extremely important. There are many
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practical methods for solving problem (1). Among these methods, as we all
know, the sequential quadratic programming (SQP) method is one of the most
efficient method to solve problem (1). Because its superlinear convergence rate,
it has been widely studied [2, 16, 9, 12, 13, 14].

The SQP method generates a sequence {xk} converging to the desired solution
by solving the following quadratic programming subproblem

min g(x)T d+
1

2
dTHd

s.t. C(x) +A(x)T d ≤ 0 (2)

where Hk ∈ Rn×n is a symmetric positive definite matrix.
For SQP method, however, it may fail if the quadratic subproblem (2) be-

comes infeasible. Burke and Han [11] gave a modification to this method wherein
the QP subproblem is altered in a way which guarantees that the associated
constraint region is nonempty for each x ∈ Rn and for which a reasonable ro-
bust convergence theory is established. Recently, Liu and Yuan [10] proposed a
method wich is a modified SQP method. Unlike other methods, their method
solves two subproblems: one is an unconstrained piecewise quadratic subprob-
lem, the other is quadratic subproblem. Similar methods are given in [5, 6].
Their method has excellent theoretical properties and is implementable. Zhang
and Zhang’s [4] described another implementable method, which is similar to
Liu and Yuan’s. At each iteration, it solves two subproblems, but either of them
is simple than the subproblem in [10]. It uses a nondifferential exact penalty
function as the merit function and gets the global convergence of the algorithm.

However, as we all know, there are several difficulties associated with the
use of penalty function, and in particular the choice of the penalty parameter.
Hence, in 2002, Fletcher and Leyffer [7] proposed a class of filter methods, which
dose not require any penalty parameter and has promising numerical results.

In fact, filter methods exhibits a certain degree of nonmonotonicity. The non-
monotone technique was proposed by Grippo et al. in 1986 [15]. The nonmono-
tone technique is helpful in overcoming the case where the sequence of iterates is
to follow the bottom of curved narrow valleys (a common occurrence in difficult
nonlinear problems). There have existed a plenty of literatures about nonmono-
tone technique, for example, nonmonotone line search approaches [15]-[22], and
nonmonotone trust region methods [23]-[28].

In this paper, motivated by the idea in [4, 31], we propose a modified method
for solving inequality constrained programming (NLP). This method has the fol-
lowing merits: At each iteration, it solve a linear programming subproblem and
a quadratic subproblem. A feasible direction is generated, well with which the
iteration points satisfy all the constraints, so it circumvents the difficulties as-
sociated with the possible inconsistency of QP subproblem of the original SQP
method. By means of nonmonotone filter, the restoration phase, a common
feature of the large majority of the filter methods, is not needed, so that the
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scale of the calculation is decreased in a certain degree. Under reasonable condi-
tions, we obtain the global convergence of the algorithm. In the end, numerical
experiments show that this method is effective.

The paper is organized as follows. In section 2, we introduce some preliminary
results. The algorithm is presented in Section 3. In Section 4, some global
convergence results are proved. And some numerical examples are given in the
last section.

2. Preliminaries

In this section, we recall some preliminary results about the filter algorithm
which will be used in the sequent analysis.

In filter method, originally proposed by Fletcher and Leyffer [7], the accept-
ability of steps is determined by comparing the value of constraint violation and
the objective function with previous iterates collected in a filter. The new iterate
is acceptable for the filter if either feasibility or the objective function value is
sufficiently improved in comparison to all iterates bookmarked in the current fil-
ter. The promising numerical results lead to a growing interest in filter methods
in recent years.

In this paper, define the violation function h(x) by

h(x) = ‖C(x)+‖22 (3)

where C(x)+ = max{0, cj(x) : j ∈ I}.
It is easy to see that h(x) = 0 if and only if x is a feasible point. So a trial

point should reduce either the value of constraint violation h or the objective
function f . To ensure sufficient decrease of at least one of the two criteria, we
say that a point x1 dominates a point x2 whenever

h(x1) ≤ h(x2) and f(x1) ≤ f(x2) (4)

All we need to do is to remember iterates that are not dominated by any
other iterates using a structure called a filter. A filter is a list F of pairs of the
form (hi, fi) such that either

h(xi) ≤ h(xj) or f(xi) ≤ f(xj) (5)

for i 6= j. We thus aim to accept a new iterate xi only if it is not dominated by
any other iterates in the filter.

In practical computation, we do not wish to accept xk + dk if its (h, f)-pair
is arbitrarily close to that of xk or that of a point already in the filter. Thus
we set a small ”margin” around the border of the dominate point of the (h, f)
space in which we shall also reject trial points. Formally, we say that a point x
is acceptable for the filter if and only if

h(x) ≤ (1− γ)hj or f(x) ≤ fj − γhj (6)

for all (hj , fj) ∈ F , where γ is close to zero. So, there is negligible difference in
practice between (6) and (5). As the algorithm progresses, we may want to add
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a (h, f)-pair to the filter. If xk + dk is acceptable for F , then xk+1 = xk + dk,
and

Dk+1 = {(hj , fj)|hj ≥ hk and fj − γhj ≥ fk − γhk, ∀(hj , fj) ∈ F}
Filter set is update as the following rule

(Fk+1) Fk+1 = Fk

⋃
{(hk+1, fk+1)}\Dk+1 (7)

We also refer to this operation as ”adding xk + dk to the filter”, although,
strictly speaking, it is the (h, f)-pair which is added.

We note that if a point xk is in the filter or is acceptable for the filter, then
any other point x such that

h(x) ≤ (1− γ)hk and f(x) ≤ fk − γhk (8)

is also acceptable for the filter and xk.
Different from the traditional criteria of filter idea, with nonmonotone tech-

nique, we recall that a point x is acceptable to the filter if and only if

h(x) ≤ (1− γ) max
0≤r≤m(k)−1

hk−r or f(x) ≤ max

[
fk,

m(k)−1∑
r=0

λkrfk−r

]
− γh(x) (9)

where (hk−r, fk−r) ∈ F for 0 ≤ r ≤ m(k)− 1, and 0 ≤ m(k) ≤ min{m(k− 1)+

1,M}, M ≥ 1 is a given positive constant,
∑m(k)−1

r=0 λkr = 1, λkr ∈ (0, 1) and
there exists a positive constant λ such that λkr ≥ λ.

Similar to the traditional filter methods, we also need to update the filter set
F at each successful iteration, the technique is comparable to the traditional one
except that we do it based on criteria (9) not (6).

3. Description of algorithm

First, we modify the quadratic subproblem of SQP method. Given xk ∈ Rn,
LP (xk) is defined as following linear programming subproblem

LP (xk) : min z

s.t. Ck +AT
k d ≤ ze (10)

z ≥ 0

‖d‖ ≤ ∆k

where e = (1, 1, ..., 1)T ∈ Rm, ∆k is a trust region radius. Let its solution be

(d̂Tk , zk)
T . Then quadratic subproblem (2) is replaced by the following convex

programming problem

QP (xk, Hk) : min qk(d) = gTk d+
1

2
dTHkd

s.t. Ck +AT
k d ≤ zke

‖d‖ ≤ ∆k (11)



A modified nonmonotone filter trust region method 577

Clearly, the convex programming QP (xk,Hk) is feasible. In fact, d̂k is a
feasible solution of QP (xk,Hk). If Hk is positive definite then the solution of
QP (xk,Hk) is unique. Let dk be the solution of QP (xk,Hk). Then dk is used
as the search direction at the current point xk.

Borrowed from the usual trust region idea, we also need to define the following
predicted reduction for the violation function h(x).

predck = h(xk)− ‖(Ck +AT
k dk)

+‖2 (12)

and the actual reduction

aredck = h(xk)− h(xk + dk) = ‖C+
k ‖2 − ‖C(xk + dk)

+‖2 (13)

Similarly, to evaluate the descent properties of the step for the objective
function, we use the predicted reduction of f(x)

predfk = qk(0)− qk(dk) = −qk(dk)

the actual reduction of f(x)

aredfk = f(xk)− f(xk + dk) (14)

In general trust region method, the step dk will be accepted if

aredfk ≥ ρpredfk (15)

where ρ ∈ (0, 1) is a fixed constant. But in this paper, considering nonmonotone
technique, we replace the condition (15) by

raredfk ≥ ρpredfk (16)

where raredfk is the relaxed actual reduction of f(x)

raredfk = max

{
f(xk),

m(k)−1∑
r=0

λkrf(xk−r)

}
− f(xk + dk). (17)

The algorithm is described as follows.

Algorithm A
Step 0. Initialization. Let 0 < ρ < 1, 0 < γ < 1, 0 < λ ≤ 1, 0 < γ0 < γ1 ≤

1 < γ2,M ≥ 1. Choose an initial point x0 ∈ Rn, a symmetric matrix H0 ∈ Rn×n

and an initial region radius ∆ ≥ ∆min > 0,F = {(h0, f0)}. Set k = 0,m(k) = 0;

Step 1. Solve LP (xk) to obtain d̂k, zk. If d̂k = 0 and zk 6= 0, stop;

Step 2. Solve QP (xk,Hk) to get dk. If dk = 0, stop;

Step 3. If xk + dk is acceptable to the filter, go to step 4, otherwise go to
step 5;

Step 4. If predfk ≥ predck and raredfk < ρraredck, then go to step 5. otherwise
go to step 6.

Step 5. ∆k ∈ [γ0∆k, γ1∆k], go to step 1;
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Step 6. xk+1 = xk + dk, update the filter set. ∆k+1 ∈ [∆k, γ2∆k] ≥ ∆min.
Update Hk to Hk+1. m(k+1) = min{m(k)+1,M}, k = k+1, and go to step 1.

4. Global convergence

In this section, to present a proof of global convergence of algorithm, we
always assume that following conditions hold.
Assumptions:

A1. The objective function f and the constraint functions cj(j ∈ I) are twice
continuously differentiable.

A2. The iterate {xk} remains in a closed, bounded subset S ⊂ Rn.
A3. There exists two constants 0 < a ≤ b such that a‖d‖2 ≤ dTHkd ≤ b‖d‖2,

for all k, for all d ∈ Rn.
A4. h(xk) − ‖(C(xk) + A(xk)

T d)+‖2 ≥ β∆k min{h(xk),∆i}, where β is a
constant.

Remark. Assumptions A1,A2 are the standard assumptions. A3 plays an
important role to obtain the convergence results. A4 is the sufficient reduction
condition. It guarantees the global convergence in a trust region method. Under
the assumptions, f is bounded below and the gradient function g(x) is uniformly
continuous in S.

Because no restriction on the constraint functions, the cluster point of the
sequence generated by Algorithm A can be either of the two different types of
points. Similar to the definition in [3], we give their definition as follows.

Definition. x ∈ Rn is called
(1) a strong stationary point of problem (1) if x is feasible and there exists a

vector ρ = (ρ1, ρ2, ..., ρm)T ∈ Rm such that

g(x) +A(x)ρ = 0 (18)

ρi ≥ 0, ρici(x) = 0 i ∈ I

(2) an infeasible stationary point of problem (1) if x is infeasible and

min
d∈Rn

max
i∈I

{ci(x) +∇ci(x)
T d, 0} = φ(x)

where φ(x) = maxi∈I{ci(x), 0}.
Clearly, a strong stationary point defined above is precisely a KKT point of

problem (1). Liu and Yuan [3] proved the following lemma, which is described
the properties of infeasible strong stationary point.

Lemma 1. If x ∈ Rn is an infeasible stationary point, there exists ρ0 ≥ 0 and
ρ ∈ Rm such that the following first-order necessary condition

ρ0g(x) +

m∑

i=1

ρi∇ci(x) = 0
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ρi ≥ 0 i ∈ I (19)

holds.

Lemma 2. If Algorithm A terminates at xk, then xk is either an infeasible
stationary point or a strong stationary point.

Proof. See Lemma 3.2 in [4]. ¤

Lemma 3. Suppose that the assumptions hold, the Algorithm A is well defined.

Proof. We will show that there exists δ > 0 such that step dk is accepted when-
ever ∆k ≤ δ.

Without loss of generality, we can assume that ‖ck‖ ≥ ε. Then we start with
δ ∈ (0, ε] such that the closed δ-ball about xk lies in S. Since δ ≤ ε, we have
that ∆k ≤ δ ≤ ε. Then by Assumption 4, it holds predck ≥ βε∆k, and

|aredck − predck| = |h(xk)− h(xk + dk)− (h(xk)− ‖(ck +AT
k dk)

+‖2)|(20)
= |‖(ck +AT

k dk)
+‖2 − ‖(ck + (A

′
k)

T dk)
+‖2|

≤ |(‖ck‖2 + 2cTkA
T
k dk + dTkAkA

T
k dk)

−(‖ck‖2 + 2cTk (A
′
k)

T dk) + dTkA
′
k(A

′
k)

T dk)|
≤ 4

√
n∆k‖ck‖‖Ak −A

′
k‖+ 4n∆2

k‖AkA
T
k −A

′
k(A

′
k)

T ‖
where A

′
k = A(x

′
k), x

′
k = xk + ξdk, ξ ∈ (0, 1) denotes some point on the line

segment from xk to xk + dk. So,

∣∣∣ aredc

k−pred
c

k

predc

k

∣∣∣ ≤ 4
√
n∆k‖ck‖‖Ak −A

′
k‖+ 4n∆2

k‖AkA
T
k −A

′
k(A

′
k)

T ‖
βε∆k

→ 0 (21)

as ∆k → 0, which implies hk − h(xk + dk) > ηpredck ≥ ηβε∆k. Hence, for all k
such that ∆k ≤ δ, there must exist γ > 0 such that

h(xk + dk) ≤ (1− γ)hk ≤ (1− γ) max
0≤r≤m(k)−1

hk−r (22)

That means the trial point xk + dk is acceptable to the filter.
To prove the implementation of Algorithm A, we only need to show that if

predfk ≥ predck, it holds rared
f
k ≥ ρpredfk .

In fact,

|aredfk − predfk | =

∣∣∣∣f(xk)− f(xk + dk) + gTk dk +
1

2
dTkHkdk

∣∣∣∣ (23)

≤
∣∣∣∣− gTk dk − 1

2
dTk∇2f(yk)dk + gTk dk +

1

2
dTkHkdk

∣∣∣∣

≤ 4∆2
k

1

2
‖∇2f(yk)−Hk‖

≤ 4n∆2
kb
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where yk = xk + ξdk, ξ ∈ (0, 1) denotes some point on the line segment from xk

to xk+dk. And b = 1
2 (sup ‖Hk‖+maxx∈S ‖∇2f(x)‖), ‖dk‖ ≤ 2

√
n∆k. Followed

by that ∣∣∣∣∣
aredck − predck

predck

∣∣∣∣∣ ≤
4n∆2

kb

βε∆k
→ 0 as ∆k → 0 (24)

We have raredfk ≥ aredfk ≥ ρpredfk for some ρ ∈ (0, 1). Therefore, the trial step
is accepted for all ∆k ≤ δ. ¤

Lemma 4. Suppose that the assumptions hold and Algorithm A dose not
terminate finitely, then limk→∞ hk = 0.

Proof. If Algorithm A cannot terminate finitely, then there are infinite points
accepted by the filter. We prove the result in two cases by the definition of filter.

(i) h(xk + dk) ≤ (1− γ)max0≤r≤m(k)−1 hk−r for all sufficiently large k,

(ii) f(xk + dk) ≤ max[fk,
∑m(k)−1

r=0 λkrfk−r]− γhk for all sufficiently large k,
where fk refers to f(xk), hk to h(xk) etc.

In view of convenience, let

h(xl(k)) = max
0≤r≤m(k)−1

hk−r

where k −m(k) + 1 ≤ l(k) ≤ k.
Also, set hk+1 = h(xk + dk), f(xk+1) = f(xk + dk).
(i). Since m(k + 1) ≤ m(k) + 1, we have

h(xl(k+1)) = max
0≤r≤m(k+1)−1

hk+1−r (25)

≤ max
0≤r≤m(k)

hk+1−r

= max{h(xl(k)), h(xk+1)}
= h(xl(k))

which implies that {h(xl(k))} converges. Then

h(xk+1) ≤ (1− γ)max0≤r≤m(k)−1 hk−r,

we have

h(xl(k)) ≤ (1− γ)h(xl(l(k)−1)). (26)

Since γ ∈ (0, 1), we deduce that h(xl(k)) → 0(k → ∞).
Therefore

h(xk+1) ≤ (1− γ)h(xl(k)) → 0.

holds by the Algorithm A. That is limk→∞ h(xk) = 0.
(ii). Suppose there exists an infinite subsequence S on which

fk+1 ≤ max

[
fk,

m(k)−1∑
r=0

λkrfk−r

]
− γhk
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Then we first show that for all k ∈ S, it holds

fk ≤ f0 − λγ

k−2∑
r=0

hr − γhk−1 ≤ f0 − λγ

k−1∑
r=0

hr (27)

We prove (27) by induction.
If k = 1, we have f1 ≤ f0 − γh0 ≤ f0 − λγh0.
Assume that (27) holds for 1, 2, ..., k, then we consider that (27) holds for

k + 1 in the following two cases.

Case 1. max[fk,
∑m(k)−1

r=0 λkrfk−r] = fk

fk+1 ≤ fk − γhk ≤ f0 − λγ

k−2∑
r=0

hr − γhk ≤ f0 − λγ

k−1∑
r=0

hr (28)

Case 2. max[fk,
∑m(k)−1

r=0 λkrfk−r] =
∑m(k)−1

r=0 λkrfk−r

Let p = m(k)− 1, then

fk+1 ≤
p∑

t=0

λktfk−t − γhk (29)

≤
p∑

t=0

λkt

(
f0 − λγ

k−t−2∑
r=0

hr − γhk−t−1

)
− γhk

= λk0

(
f0 − λγ

k−p−2∑
r=0

hr − λγ

k−2∑

r=k−p−1

hr − γhk−1

)
− γhk

+λk1

(
f0 − λγ

k−p−2∑
r=0

hr − λγ

k−3∑

r=k−p−1

hr − γhk−2

)

+ · · ·+ λkp

(
f0 − λγ

k−p−2∑
r=0

hr − γhk−p−1

)

≤
p∑

t=0

λkrf0 − λγ

k−p−2∑
r=0

(
p∑

t=0

λkr

)
hr −

p∑
t=0

λkrγhk−t−1 − γhk

By the fact that
∑p

t=0 λkt = 1, λkt ≥ λ and hr ≥ 0, we have

fk+1 ≤ f0 − λγ

k−p−2∑
r=0

hr − λγ

k−1∑

r=k−p−1

hr − γhk (30)

= f0 − λγ

k−1∑
r=0

hr − γhk

≤ f0 − λγ

k∑
r=0

hr
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Then for all k ∈ S, (27) holds.
Moreover, since {fk} is bounded below, let k → ∞, we can get that

λγ

∞∑
r=0

hr < ∞

It follows that hk → ∞ (k → ∞). ¤

Theorem 1. Suppose {xk} is an infinite sequence generated by Algorithm A.
dk is the solution of QP (xk,Hk). If the multiplier according to the subproblem
(11) is uniform bounded, then limk→∞ ‖dk‖ = 0.

Proof. Suppose by contradiction that there exists constants ε > 0 and k̄ > 0
such that ‖dk‖ > ε for all k > k̄. Then similar to the proof of Lemma 3, we have

predfk = −qk(dk) ≥ βεmin{∆k, ε} ≥ βεmin{∆̄, ε} (31)

As in the proof of Lemma3, there exists ρ > 0 such that raredfk ≥ ρpredfk . That

is fk+1 ≤ max[fk,
∑m(k)−1

r=0 λkrfk−r] − ρpredfk . Similar to the proof of Lemma
4, we have

ρ

∞∑

k=0

predfk < ∞ (32)

which implies predfk → 0. It contradicts (31). Hence the result follows. ¤

Theorem 2. Suppose {xk} is an infinite sequence generated by Algorithm
A, then every cluster point of {xk} is strong stationary point (KKT point) of
problem (1).

Proof. Because {xk} lies in a bounded set, there must exists x∗, such that xk →
x∗, k ∈ K, then by Lemma 4 we have h(xk) → 0, k ∈ K. That means x∗ is a
feasible point. Then zk → 0. From Theorem 1, we get d∗ = 0 is the solution of
subproblem QP (x∗,H∗). Then by the KKT condition, we obtain

g∗ + ρ∗A∗ = 0 (33)

ρ∗i ≥ 0, ρ∗c∗i = 0 i ∈ I.

Therefore, x∗ is a KKT point of problem (1). ¤

5. Numerical tests

In this section, we give some numerical experiences to show the success of
proposed method.

(1) Updating of Hk is done by

Hk+1 = Hk +
yTk yk
yTk sk

− Hksks
T
kHk

sTkHksk
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where yk = θkŷk + (1− θk)Hksk

θk =

{
1 if sTk ŷk ≤ 0.2sTkHksk

0.8sTk Hksk
sTk Hksk−sTk ŷk

otherwise
(34)

and ŷk = gk+1−gk+(Ak+1−Ak)ρk, sk = xk+1−xk, ρk is a multiplier associated
with (11).

(2) The stop criteria is ‖dk‖ sufficiently small. We assume the error toleration
is 10−6;

(3) The algorithm parameters were set as follows: H0 = I ∈ Rn×n, γ =
0.02, ρ = 0.5, γ0 = 0.1, γ1 = 0.5, γ2 = 2,∆min = 10−6,∆0 = 1,M = 3. The
program is written in Matlab.

In Table 1 which presented the results of the numerical experiences, we use
the following notations:

Problem represents the number of problems in [29], NI,NF,NG represent the
numbers of iterations, function and gradient calculations, respectively.

problem NI NF NG

HS22 7 5 1

HS42 20 16 6

HS43 12 9 2

HS44 5 4 1

HS76 6 3 2

HS86 6 4 4

HS113 12 10 10

Table 1

From the above results, we can see the algorithm in this paper is quite effec-
tive.
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