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Thirty-one gross abnormalities that have been observed in tilapia are described:  10 fin, five eye, 
five jaw, four body shape, three head, two yolk sac, one operculum, and conjoined twins. 
Twenty-one have been described in published papers; the others were obtained from a survey. 
Breeding experiments revealed that three were heritable, while six were not heritable. Five could 
be caused by a bacterial infection, and one could be produced by a fungus. Four deformities were 
in offspring of males that had been injected with methyl methane sulphonate. Three were 
produced when sperm was treated with methyl methane sulphonate. Six were observed during 
sex reversal studies, and one was found following heat shock of fertilized eggs. Three were 
observed in polluted river water. The cause of other deformities is not known. 
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Introduction 

Aquacultured fish with gross abnormalities can be 
problematic because they can affect marketability 
(e.g., Afonso et al. 2000; Michie 2001; Verhaegen et 
al. 2007; Castro et al. 2008). Consequently it is 
important to describe deformities, determine their 
frequencies and determine their causes. 

Abnormal fish occur in all populations. Dawson 
(1964, 1966, 1971) and Dawson and Heal (1976) 
cataloged dozens of abnormalities in several hundred 
species of fish in a 1,499-reference review. A detailed 
examination of any population will reveal deformed 
individuals. For example, Afonso et al. (2000) found 
39 deformities in a hatchery population of 11,640 
gilthead sea bream Sparus aurata and Verhaegen et  
al. (2007) found that 80% of intensively raised stocks 
of gilthead seabream had deformed individuals. 
Sullivan et al. (2007) surveyed six Atlantic salmon 
Salmo salar farms and found that 3.8-8.8% of the fish 
had the “stubby body” deformity.  

Surveys of tilapia populations have also revealed 
this problem. Guilherme (1992) found 2,621 
Oreochromis niloticus that had one of three fin 
deformities in 5,456 specimen fish. Eissa et al. (2009) 

 
 

surveyed O. niloticus at two Egyptian farms and 
found that 2.7% and 1.6% of the fish at these 
facilities were deformed. Phelps and Karsina (Phelps 
RP and Karsina E, Auburn University, AL, pers. 
comm.) examined Auburn University-Ivory Coast 
strain (AU-I) O. niloticus and found 23 deformed 
fingerlings that had one of four deformities in a 
sample of 7,200 fish; they also found that 2 of 234 
brood fish were deformed (a single deformity). 

The occurrence of deformed fish at fish farms 
should not be surprising, because a major goal of fish 
culture is to maximize survival (Tave 1993). Eggs 
and fry are often artificially incubated, which enable 
deformed ones to survive. Ponds are fertilized and 
fish are fed; deformed fish that might have trouble 
finding food in the wild have easy access to food. 
Finally, efforts are taken to exclude or kill predators; 
abnormal individuals that would be vulnerable to 
predation in the wild can survive at a fish farm. 

It is often assumed that all abnormalities have a 
genetic basis, but most are non-heritable (Tave, 1993). 
Non-heritable abnormalities can be caused by disease 
(e.g., Hoffman et al., 1962; Hoffman, 1984; Pasnik et 
al. 2007); injury (e.g., Breeder, 1953; Gunter and 
Ward, 1961); environmental disturbances (e.g., 
Rogers 1956; Garside, 1959; Yamamoto et al. 1963; 
Schröder, 1969; Mayer et al., 1978; Couch et al., 
1979; Backiel et al., 1984; Grady et al., 1992; 
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Wargelius et al., 2005; Sun et al., 2009); nutritional 
deficiencies (e.g., Rucker at al., 1970; Andrews and 
Murai, 1975; Lim and Lovell, 1978; Murai and 
Andrews, 1978), and culture conditions (e.g., Romanov, 
1984; Wiegand et al., 1989; Leary et al., 1991; Krise 
and Smith, 1993; Sawada et al., 2006). They can also 
be the result of developmental errors (e.g., Tave et al., 
1982; Dunham et al., 1991; Handwerker and Tave, 
1994; Tave and Handwerker, 1994). 

When abnormalities are produced genetically, they 
are usually produced by recessive alleles (e.g., Aida, 
1930; Matsui, 1934a; Rosenthal and Rosenthal, 1950; 
Schultz, 1963; Thomerson, 1966; Tukeuchi, 1966; 
Mair, 1992). One reason why genetically-produced 
abnormalities occur at hatcheries is that most 
hatchery populations have small effective breeding 
numbers (Tave, 1993, 1999). Inbreeding is inversely 
related to effective breeding number, and one aspect 
of inbreeding depression is an increase in the 
production of abnormal fish--these abnormalities are 
produced by recessive alleles.    

Inbreeding studies in fish have produced abnor-
malities in rainbow trout Oncorhynchus mykiss 
(Aulstad and Kittelson, 1971; Kincaid, 1976), zebra 
fish Danio rerio (Piron, 1978; Mrakovčić and Haley, 
1979; and convict cichlid Cichlasoma nigro-
fasciatum (Winemiller and Taylor, 1982). For 
example, one generation of brother-sister matings 
(inbreeding=25%), increased the percentage of 
deformed rainbow trout by 3%, and two generations 
(inbreeding=37%) increased it by 10% (Kincaid, 
1976).  

 Even though most heritable abnormalities are 
produced by recessive alleles, they can also be 
produced by dominant alleles (Matsui, 1934b; Lodi, 
1978; Tave et al., 1983). 

Deformed fish can be produced when species are 
hybridized (e.g., Ihssen, 1978; Chappell, 1979; Beck 
and Biggers, 1983; Blanc and Poisson, 1983; Blanc 
and Chevassus, 1986; Kurokura et al., 1986; McKay 
et al., 1992). In some cases the incidence is so high 
that it makes the hybrid unsuitable for commercial 
development. For example, Chappell (1979) found 
that the hybrids between white catfish, Ameiurus 
catus and both channel catfish Ictalurus punctatus 
and blue catfish I. furcatus were unsuitable for 
commercial purposes because many were deformed. 
These abnormal hybrids were produced because 
white catfish have 48 chromosomes, while channel 
catfish and blue catfish have 58 chromosomes 
(LeGrande et al. 1984). 

Deformed fish can be produced during breeding 
programs that involve chromosomal manipulation 

(e.g., Chourrout, 1980 1982; Thorgaard et al., 1981; 
Cassani and Caton, 1986; Chao et al., 1986; Chen et 
al., 1986; Myers, 1986; Cherfas et al., 1990, 1993; 
Myers and Hershberger, 1991; Gray et al., 1993; 
Yamazaki and Goodier, 1993). These deformities can 
be either genetic or envronmental. 

Because all hatchery populations contain deformed 
individuals, farmers and hatchery managers should 
routinely monitor their fish and catalog abnormalities 
(written description and photograph) and calculate 
the frequencies. This is critical, because it is the only 
way to determine if certain abnormalities recur 
annually and if the frequencies are increasing.  

If the frequency of an abnormality increases, the 
effects that it has on production traits and 
marketability should be studied. Some deformities 
have been shown to adversely affect growth, survival, 
hatchability, disease resistance, or other traits (Tave et 
al. 1983; Koumoundouros et al., 1997). On the other 
hand, some can improve market value. For example, 
bizarre phenotypes such as telescope eyes in goldfish 
Carassius auratus are desired by tropical fish fanciers, 
and common carp Cyprinus carpio, with abnormal 
scale patterns command higher market prices in some 
locales. 

This paper describes 31 gross deformities that have 
been observed in tilapia and provides some in-
formation on their frequencies and causes. Twenty-
one were described in published reports; the others 
were obtained from a survey.  

 
Fin Deformities 

Saddleback 
This abnormality was discovered in the Auburn 

University population of O. aureus (Tave et al., 1983). 
Bondari (1984) observed it in a population of O. 
aureus at the University of Georgia, Tifton, GA; that 
population was founded by fish that came from 
Auburn University. It was observed in O. aureus in 
the St. John River, Florida (Zale A, University of 
Florida, Gainesville, FL, USA, pers. comm.); he 
estimated that the frequency was 0.05%.   

Saddlebacks lack parts of or all of the dorsal fin. 
Fin ray loss was variable; some individuals were 
missing only the first 1 or 2 hard spines, while others 
had no dorsal fin (Fig. 1). In some saddlebacks, the 
pectoral, pelvis and/or anal fins were either deformed 
or missing. Vertebrae 1-3 were always deformed, and 
this resulted in curvature of the spine and affected 
body length. Missing spines and rays in the dorsal fin 
were accompanied by missing pterygiophores; this 
produced the depression of the dorsal margin of the 
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Fig. 1. Saddleback in Oreochromis aureus (b-n), showing the variable expression of the phenotype; (a) is a 
normal individual. Source: Tave et al. (1983) J Fish Dis 6, 59-73; with permission, courtesy of Journal of Fish 
Diseases. 
 
body. Deformed or missing paired fins were 
accompanied by abnormal or missing bones in the 
pectoral and/or pelvic girdles. 

Saddleback is produced by an autosomal dominant 
lethal allele that exhibits incomplete dominance. 
Homozygous dominant individuals (SS) are aborted; 
heterozygotes (S+) are saddlebacks; homozygous 
recessive (++) individuals are normal. 

The S+ genotype (the genotype that produces 
saddleback) had adverse pleiotropic effects on 
viability and disease resistance: 67% of saddlebacks 
died during the first 2-3 months. When challenged by 
Saprolegnia sp., 33% of saddlebacks died, while only 
5% of normal fish died.  

Because this abnormality is produced by a 
dominant allele, a single generation of selection 
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where all saddlebacks are culled will eliminate the 
deformity.  

Abella (Abella TO, University College of Swansea, 
Wales, UK, pers. comm.) observed a similar 
phenotype in O. niloticus. In a sample of 1,000 fish, 
10 had no dorsal fin. 

Caudal Deformity Syndrome (CDS) 
CDS was discovered in the Lake Manzala strain of 

O. niloticus maintained at University College of 
Swansea, Wales (Mair 1992). The deformity was 
characterized at the first feeding stage by the 
reduction of the caudal fin; additionally, there was an 
upward curvature of the caudal region of the spine 
(Fig. 2). Fish with CDS also had deformed opercula; 
they were not fully developed, and some gill lamellae 
were exposed. Fish with this deformity were unable 
to swim efficiently. No fish with CDS lived more 
than 7 days after yolk sac absorption. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Caudal deformity syndrome in Oreochromis 
niloticus (A and B), illustrating the extreme ex-
pressions of the phenotype; (C) is a normal individual. 
Source: Mair (1992) J Fish Dis 15, 71-75; with 
permission, courtesy of Journal of Fish Diseases. 

 
Breeding experiments revealed that this deformity 

is produced by an autosomal recessive allele; CDS is 
produced by the recessive allele: ++ and +m fish are 
normal, while mm fish have CDS.  

If this phenotype exists in a population of O. 
niloticus, it can adversely affect fingerling production, 
since 25% of the offspring produced by the mating of 
two heterozygotes will die. Because this deformity is 

produced by a recessive allele, selection cannot 
eliminate the allele. Progeny testing must be used to 
eliminate the allele. 

No dorsal fin  
This deformity was observed in O. niloticus during 

a sex reversal study; 1,114 of 5,416 had this 
deformity. Survival of the fish with no dorsal fish was 
similar to that of normal fish (Guilherme 1992). 
Pasnik et al. (2007) found that Steptococcus 
agalactinae could produce this deformity in O. 
niloticus. 

No dorsal and no anal fin 
This deformity was observed in O. niloticus during 

a sex reversal study (Fig. 3). A subsequent breeding 
study revealed that the deformity was heritable 
(Guilherme, 1994).  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Oreochromis niloticus without dorsal and anal 
fins. Source: Guilherme (1994) Cienc Pratica Lavras 
18, 123-124; with permission, courtesy of Ciencia e 
Pratica, Lavras. 

 
Tailless 

This phenotype has been observed in several stocks 
of O. niloticus. It was first described in AU-I O. 
niloticus (Tave et al., 1982). Tailless individuals were 
missing the caudal peduncle and the caudal fin (Fig. 
4b). Tailless fish had only 26 vertebrae, 3 fewer than 
normal fish. Vertebrae 20-26 were deformed, causing 
curvature of the spine; this demonstrated that the 
deformity was not due to injury. Only two tailless 
individuals were found, and they died before they 
could be spawned. Phelps and Karsina (pers. comm.) 
surveyed a population of 7,200 AU-I O. niloticus 
fingerlings, and observed one tailless individual. 

A tailless individual was observed in a population 
in Saudi Arabia (George, 2006; George TT, pers. 
comm., Global Aquaculture Consultants, Toronto, 
ON, Canada). 
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Fig. 4. Stumpbody in Oreochromis aureus (c and d) and tailless in O. niloticus (b), compared to a normal O. 
aureus (a). Source: Tave et al. (1982) 5, 487-494; with permission, courtesy of Journal of Fish Diseases. 

 
A tailless individual was observed in the 

population maintained at the Pukyong National 
University, Busan, Korea (Jo and Kim, unpublished 
data.). Abella (Abella TO, pers. comm.) found 10 
tailless fish in a survey of 1,000 O. niloticus at the 
University College of Swansea, Wales.  

Pasnik et al. (2007) found that S. agalactinae could 
produce this deformity in O. niloticus. 

No anal fin 
Guilherme (1992) found 863 O. niloticus with no 

anal fin in a population of 5,456 fish during a sex 
reversal study. Survival of the deformed fish was 
3.4%. 

Phelps and Karsina (pers. comm.) surveyed a 
population of 234 AU-I O. niloticus brood fish and 
observed two that had no anal fin. Tave et al. (1983) 
found one O. aureus saddleback with no anal fin, but 
that individual had no fins except for the caudal fin 
(Fig. 1n). 

Pasnik et al. (2007) found that S. agalactinae could 
produce this deformity in O. niloticus. 

No pelvic fin 
Guilherme (1992) found 644 O. niloticus with this 

deformity in a population of 5,456 fish during a sex 
reversal study. Survival of the deformed fish was 
46.9%. Tave et al. (1983) found some saddleback O. 
aureus that were missing pelvic fins.  

Pasnik et al. (2007) found that S. agalactinae could 
produce this deformity in O. niloticus. 

Fusion of dorsal and anal fins 
Eissa et al. (2009) found this deformity in O. 

niloticus in Egypt. The deformity constricted and 
twisted the body (Fig. 5).  

Swayback 
This deformity was observed in the Auburn 

University population of O. mossambicus (Tave, 
unpublished data). Swaybacks were missing the 
middle portion of the dorsal fin. Twenty-four 
individuals were observed when fish were 2-4 cm. All 
died within a week of discovery. 

Split fins 
Oreochromis spp. with split fins were observed in 

polluted rivers in Taiwan; 1-87.5% of the fish 
observed had this deformity (Sun et al. 2009).  

 
Body Deformities 

Stumpbody 
Stumpbody was discovered in the Auburn Uni-

versity population of O. aureus (Tave et al., 1982). 
Stumpbodies were dwarfs, whose body was shortened 
along the anterior-posterior axis (Fig. 4c and 4d). The 
posterior portion of the trunk appeared to be 
compressed. The trunk was much thicker than that of 
normal fish, and the relative body depth was also 
greater.  

Stumpbodies had gross skeletal deformities. They 
had 15 vertebrae, which was approximately half the  
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Fig. 5. Fusion of dorsal and anal fins (3B) in O. niloticus; 3A is a normal individual. 4 are radiographs of the 
normal (4A) and deformed (4B) individuals. Source: Eissa et al. (2009) Chemosphere 77, 419-425; with 
permission, courtesy of Chemosphere. 

 
number found in normal fish (29). Many vertebrae 
were grossly deformed, which resulted in marked 
curvature of the spine. Vertebral deformities varied 
considerably among stumpbodies; no two individuals 
were identical. Breeding experiments revealed that it 
was not heritable. 

Eissa et al. (2009) observed this phenotype in 
farmed populations of O. niloticus in Egypt. Eissa 
(Eissa AE, Faculty of Veterinary Medicine, Cairo 
University, Giza, Egypt pers. comm.) was able to 
produce stumpbodies by experimental infection with 
Aspergillus ochraceus.  

A similar phenotype was observed in Lake 
Manzala strain O. niloticus at University College of 
Swansea, Wales, (Mair GC, Central Luzon State 
University, Nueva Ecija, Philippines, pers. comm.) 
and in a strain of “Florida red tilapia,” (a strain 
derived from O. urolepis hornorum ♀ × O . 
mossambica ♂ matings) (Watanabe WO, Caribbean 
Marine Research Center, Vero Beach, FL, USA, pers. 
comm.); he estimated that the frequency of the 
deformity in the hybrid population was 0.014-0.02%. 

Runts 
Phelps and Karsina (pers. comm.) found 19 runts 

in a survey of 7,200 AU-I O. niloticus fingerlings. 
These fish were one-half to one-quarter the size of 
their sibs and did not grow well. It is not known if 
this was a morphological deformity or a physiological 
defect, such as a malfunctioning pituitary. 

Ra’anan and Lahav (Ra’anan Z and Lahav E, 
Aquaculture Production Technologies, Ltd., 
Jerusalem, Israel, pers. comm.) found runts in the 
ND5 female line of O. niloticus. They described the 
fish as exceptionally short and flat, and the deformity 
appears at a constant frequency of 2%. 

Flattened body 
This deformity was produced in F2 O. 

mossambicus × O. niloticus hybrids at the University 
of Wales, Swansea (Shah 1984). Sperm from F1 
hybrid males had been treated with 0.005-M of 
methyl methane sulphonate (a mutagen). A single fish 
with a flattened body was produced by this treatment.  

Bent tail 
This deformity was produced in O. niloticus from 

Stirling University, Stirling Scotland (Shah 1984). It 
was produced from matings where males had been 
injected with 50 mg methyl methane sulphonate/kg 
body weight IP prior to spawning. Individuals with 
this deformity has marked curvature of the body; the 
caudal area and tail was bent laterally at a right angle.  

 
Operculum Deformities 

Deformed opercula, described as “semi-oper-
culum,” were observed in both Auburn University-
Egypt strain O. niloticus and Auburn University 
population of O. mossambicus (Handwerker and Tave, 
1994; Tave and Handwerker, 1994). Fish with this 
deformity had a shortened operculum that exposed 
part of the gills (Fig. 6). All fish had one normal and 
one deformed operculum. The deformity was variable, 
in that some fish with a semi-operculum had a 
deformed operculum that was minimally shortened, 
while others had an operculum that so deformed that 
most of the gill lamellae were exposed. Breeding 
studies with both species revealed than the deformity 
was not genetic. 

Phelps and Karsina (pers. comm.) found 2 fish 
with this deformity in their survey of 7,200 AU-I O. 
niloticus. 
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Fig. 6. Semi-operculum in Oreochromis niloticus. 
The deformity is identical in O. mossambicus. 
Source: Tave and Handwerker (1994) J World Aquac 
Soc 25, 333-336; with permission, courtesy of 
Journal of the World Aquaculture Society . 
 

An incompletely developed operculum in tilapia 
can be produced by environmental contaminants and 
by infection. Clemens and Inslee (1968) observed 
fish with what they described as a “poorly formed 
opercle” in O. mossambicus that had consumed 
methyl testosterone-treated feed during a sex-reversal 
study; the deformity was not observed in the control. 
Pasnik et al. (2007) found that S. agalactiae could 
produce this deformity in O. niloticus. Sun et al. 
(1998, 2009) found that this deformity in O. niloticus 
and O. mossambicus in rivers in Taiwan. Sun et al. 
(2009) found that it could be produced in O. niloticus 
by low levels of dissolved oxygen, high levels of 
ammonia, and by heavy metals. 

 
Eye Deformities 

Anopthalmia 
Anopthalmia (the congenital absence of one or 

both eyes) was observed in the Auburn University 

population of O. mossambicus (Tave and Handwerker, 
1998). Seven anopthalmics were observed; five were 
missing the left eye, and two were missing the right 
eye. The area over the missing eye was covered with 
scales and the skull was slightly depressed. When 
viewed dorsally, the skull appeared to be slightly 
curved (Fig. 7). A breeding study revealed that the 
deformity was not heritable. 

In a survey of 1,000 fish in the O. niloticus 
population at the University College of Swansea, Abella 
(Abella TO, pers. comm.) observed 3 anopthalmics. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Anophthalmia in Oreochromis mossambicus. 
Source: Tave and Handwerker (1998) Ribarstvo 56, 
125-130; with permission, courtesy of Ribarstvo.  

 
Four eyes 

A single four-eyed fish (Fig. 8) was observed in O. 
niloticus at the Tennessee Valley Authority Hatchery, 
Muscle Shoals, AL (Jo, unpublished data). The fish 
died shortly after it was observed.  

Both eyes on one side 
This deformity was observed in a O. niloticus 

population at the University College of Swansea, 
(Abella TO, pers. comm.); the position of the eyes 
was described as similar to that of most flounders. 

Less developed eyes  
This deformity was produced in O. niloticus from 

Stirling University (Shah, 1984). It was produced 
from matings where males had been injected with 50 
mg methyl methane sulphonate/kg body weight IP 
prior to spawning. Eyes in fish with this deformity 
were significantly smaller than those of normal fish.  

Fused eyes 
This deformity was observed in O. aureus 

maintained at the University of Wales (Mair GC, pers. 
comm.). The anterior-most portion of the head in 
these fish was flat and the eyes were fused at the  
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Fig. 8. A four-eyed in Oreochromis niloticus. (a) 
Dorsal view. (b) Ventral view. Photograph by Jae-
Yoon Jo. 

 
flattened front. These fish also had the deformity 
called “protruding jaw.” Three fish with fused eyes 
were observed. A breeding experiment revealed that 
the deformity was not genetic. 

 
Jaw Deformities 

Bullhead 
This deformity was produced in F2 O. 

mossambicus × O. niloticus hybrids at the University 
of Wales (Shah, 1984). Sperm from F1 hybrid males 
had been treated with 0.05 M of methyl methane 
sulphonate. Three bullheads were produced. The 
lower jaw of these fish was much larger than that of 
normal fish. A breeding study showed that the 
deformity was not genetic.  

Upturned mouth 
This deformity was produced in F2 O. niloticus × O. 

mossambicus hybrids at the University of Wales 
(Shah, 1984). Sperm from F1 hybrid males were 
treated with 0.05 M of methyl methane sulphonate. A 
single fish with upturned mouth was produced. The 
mouth in the deformed individual terminated in an 
upward direction. 

Deformed lower jaw 
Clemens and Inslee (1968) reported that some O. 

mossambicus that had consumed methyl testosterone-
treated feed during a sex-reversal breeding program 
had a deformed lower jaw, but the deformity was not 
described. No fish in the control population had this 
deformity.  

Protruding jaw  
This deformity was observed in O. aureus 

maintained at the University of Wales (Mair GC, pers. 
comm.). Fish with this deformity had a jaw that 
protruded in a tube-like fashion, and the mouth was at 
the end of the jaw. These fish also had the fused eye 
deformity. Three fish with protruding jaw were 
observed. A breeding experiment revealed that the 
deformity was not genetic.  

A similar deformity named “lower lip extension” 
was observed in O. niloticus found in polluted rivers 
in Taiwan (Sun et al., 1998, 2009). 

Lateral projection of mandibles 
This deformity was observed in farmed popula-

tions of O. niloticus in Egypt (Eissa et al. 2009). The 
deformity is characterized by a lateral bowing of the 
mandibles with outward thickening of the lateral 
sides of the mandibles (Eissa AE, pers. comm.) 

 
Head Deformities 

Foreshortened head 
Clemens and Inslee (1968) observed this deformity 

in O. mossambicus that had consumed methyl 
testosterone-treated feed during a sex reversal study; 
the deformity was not observed in the control 
population.  

Parrot-like head 
This deformity was observed in a farmed popula-

tion of O. niloticus in Egypt (Eissa et al., 2009). The 
anterior portion of the head above the mouth is 
stunted, given the fish a protruding mouth (Fig. 9).  

Microcephaly  
Microcephaly, an abnormal reduction in head size, 

was observed in O. niloticus from Stirling University 
(Shah, 1984). It was produced from matings where 
males had been injected with 50 mg methyl methane 
sulphonate/kg body weight IP prior to spawning.  

 
Yolk Sac Deformities 

Double yolk sac 
Rothbard et al. (1980) described an O. urolepis  
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Fig. 9. Parrot-like head in O. niloticus, with a 
radiograph of the deformity. Source: Eisssa et al. 
(2009) Chemosphere 77, 419-425; with permission, 
courtesy of Chemosphere.  

 
hornorum fry with a double yolk sac. The yolk sac 
was large and partially constricted in the middle. 

Enlarged yolk sac 
This deformity was produced in O. niloticus from 

Stirling University (Shah, 1984). It was produced 
from matings where males had been injected with 50 
mg methyl methane sulphonate/kg body weight prior 
to spawning. Individuals with this deformity had yolk 
sacs that were significantly larger than those 
possessed by normal individuals.  

 
Conjoined Twins 

Hulata and Rothbard (1978) described two sets of 
conjoined twins that they found in O. mossambicus 
and one from an O. urolepis ♀ × O. niloticus ♂ hybrid 
mating. Rothbard et al. (1980) described one set of 
conjoined twins from an O. niloticus ♀ × O. aureus ♂ 
hybrid mating. Owusu-Frimpong and Hargreaves 
(2000) found conjoined O. aureus following heat 
shock of fertilized eggs. Four sets of conjoined twins 
were observed from a total of 100 spawns (70,000-
100,000 eggs) that were produced by 14 O. niloticus 
females at the Pukyong National University, Busan 
(Fig. 10) (Jo and Kim, unpublished data). Abella 
(Abella TO, pers. comm.) observed conjoined O. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Conjoined twin in Oreochromis niloticus. 
Photograph by Dong Soo Kim. 
 
niloticus. Abiado (Abiado MA, Central Luzon State 
University, Nueva Ecija, Philippines, pers. comm.) 
observed 4 sets of conjoined twins in a population of 
2,500 O. niloticus × O. aureus hybrid swim-up fry. 
Mair (Mair G, pers. comm.) observed conjoined twins 
in both O. niloticus and O. aureus stocks maintained 
at the University of Wales. Tave (unpublished data) 
observed a set of AU-I O. niloticus conjoined twins. 

 
Conclusion 

All fish populations contain abnormal individuals. 
Thirty-one gross abnormalities in tilapia were 
described in this review. Fin abnormalities accounted 
for almost a third of those that were observed (10), 
followed by abnormalities of the eye (five), jaw (five), 
body shape (four), head (three), yolk sac (two), 
operculum (one), and conjoined twins. It is often 
assumed that abnormalities have a genetic basis and 
that they are a clinical sign of inbreeding depression, 
but this survey shows that only three of nine 
abnormalities that were subjected to genetic studies 
were heriatable, and one was caused by a dominant 
allele which means that it was not a side effect of 
inbreeding. Most abnormalities are non-heritable, and 
this survey shows that that abnormailites in tilapia 
can be produced by pathogens, by pollutants and 
other chemicals, by heat shock, and by sex reversal. 
Because abnormalities can decrease yields and profits, 
it is important to census a managed population to 
catalog the abnormalities. A yearly census will let 
managers know how many abnormalities are present 
and whether the percent is increasing over time. An 
increase in percent deformities or of a particular 
deformity can be an indication that a problem exits. If 
a deformity becomes problematic, a study should be 
conducted to determine the cause and possible 
solutions. 
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