DOI QR코드

DOI QR Code

Role of Dual Flagella in the Pathogenesis of Vibrio parahaemolyticus

  • Lee, Hwa-Gyu (Department of Food Science and Biotechnology, College of Ocean Science and Technology, Kunsan National University) ;
  • Jeong, Byung-Gon (Department of Environmental Engineering, College of Engineering, Kunsan National University) ;
  • Park, Kwon-Sam (Department of Food Science and Biotechnology, College of Ocean Science and Technology, Kunsan National University)
  • Received : 2011.03.01
  • Accepted : 2011.05.16
  • Published : 2011.06.30

Abstract

Vibrio parahaemolyticus possesses two flagella systems: polar and lateral flagella for swimming in liquid and swarming on solid surfaces or in viscous environments. To elucidate the pathogenic role of these dual flagella systems, we constructed single- and double-deletion mutants of the lafA and flhAB flagellum genes and investigated their biofilm formation, cell adhesion, and colonization of the small intestine of suckling mice. The double-mutant strain was more impaired in biofilm formation than either of the single-mutant strains. In addition, the lafA, flhAB, and double-mutant strains showed 40%, 45%, and 60%, respectively, lower adherence to HeLa cells than the wild-type strain. Moreover, the lafA, flhAB, and double-mutant strains exhibited 49%, 5.6 and 6.7 times, respectively, lower colonization in a competition assay than the wild-type strain. These findings indicated that polar flagella were more important than lateral flagella for the pathogenesis of V. parahaemolyticus.

Keywords

References

  1. Atsumi T, McCarter L and Imae Y. 1992. Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature 355, 182-184. https://doi.org/10.1038/355182a0
  2. Belas MR and Colwell RR. 1982. Adsorption kinetics of laterally and polarly flagellated Vibrio. J Bacteriol 151, 1568-1580.
  3. Boles BR and McCarter LL. 2002. Vibrio parahaemolyticus scrABC, a novel operon affecting swarming and capsular polysaccharide regulation. J Bacteriol 184, 5946-5954. https://doi.org/10.1128/JB.184.21.5946-5954.2002
  4. Davey ME and O'toole GA. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64, 847-867. https://doi.org/10.1128/MMBR.64.4.847-867.2000
  5. Enos-Berlage JL, Guvener ZT, Keenan CE and McCarter LL. 2005. Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol 55, 1160-1182.
  6. Gardel CL and Mekalanos JJ. 1996. Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression. Infect Immun 64, 2246-2255.
  7. Jaques S and McCarter LL. 2006. Three new regulators of swarming in Vibrio parahaemolyticus. J Bacteriol 188, 2625-2635. https://doi.org/10.1128/JB.188.7.2625-2635.2006
  8. Kawagishi I, Imagawa M, Imae Y, McCarter L and Homma M. 1996. The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Mol Microbiol 20, 693-699. https://doi.org/10.1111/j.1365-2958.1996.tb02509.x
  9. Klose KE and Mekalanos JJ. 1998. Distinct roles of an alternative sigma factor during both free-swimming and colonizing phases of the Vibrio cholerae patho-genic cycle. Mol Microbiol 28, 501-520. https://doi.org/10.1046/j.1365-2958.1998.00809.x
  10. Lee JH, Rho JB, Park KJ, Kim CB, Han YS, Choi SH, Lee KH and Park SJ. 2004. Role of flagellum and motility in pathogenesis of Vibrio vulnificus. Infect Immun 72, 4905-4910. https://doi.org/10.1128/IAI.72.8.4905-4910.2004
  11. Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, Najima M, Nakano M, Yamashita A, Kubota Y, Kimura S, Yasunaga T, Honda T, Shinagawa H, Hattori M and Iida T. 2003. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361, 743-749. https://doi.org/10.1016/S0140-6736(03)12659-1
  12. McCarter L and Silverman M. 1990. Surface-induced swarmer cell differentiation of Vibrio parahaemolyticus. Mol Microbiol 4, 1057-1062. https://doi.org/10.1111/j.1365-2958.1990.tb00678.x
  13. McCarter L, Hilmen M and Silverman M. 1988. Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus. Cell 54, 345-351. https://doi.org/10.1016/0092-8674(88)90197-3
  14. McCarter LL. 2004. Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 7, 18-29. https://doi.org/10.1159/000077866
  15. Miller VL and Mekalanos JJ. 1988. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170, 2575-2583. https://doi.org/10.1128/jb.170.6.2575-2583.1988
  16. O'Toole G, Kaplan HB and Kolter R. 2000. Biofilm formation as microbial development. Ann Rev Microbiol 54, 49-79. https://doi.org/10.1146/annurev.micro.54.1.49
  17. Ottemann KM and Miller JF. 1997. Roles for motility in bacterial-host interactions. Mol Microbiol 24, 1109-1117. https://doi.org/10.1046/j.1365-2958.1997.4281787.x
  18. Park KS, Iida T, Yamaichi Y, Oyagi T, Yamamoto K and Honda T. 2000. Genetic characterization of DNA region containing the trh and ure genes of Vibrio parahaemolyticus. Infect Immun 68, 5742-5748. https://doi.org/10.1128/IAI.68.10.5742-5748.2000
  19. Park KS, Arita M, Iida T and Honda T. 2005. vpaH, a gene encoding a novel histone-like nucleoid structure-like protein that was possibly horizontally acquired, regulates the biogenesis of lateral flagella in trhpositive Vibrio parahaemolyticus TH3996. Infect Immun 73, 5754-5761. https://doi.org/10.1128/IAI.73.9.5754-5761.2005
  20. Shime-Hattori A, Iida T, Arita M, Park KS, Kodama T and Honda T. 2006. Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation. FEMS Microbiol Lett 264, 89-97. https://doi.org/10.1111/j.1574-6968.2006.00438.x
  21. Shinoda S, Honda T, Takeda Y and Miwatani T. 1974. Antigenic difference between polar monotrichous and peritrichous flagella Vibrio parahaemolyticus. J Bacteriol 120, 923-928.
  22. Stewart BJ and McCarter LL. 2003. Lateral flagellar gene system of Vibrio parahaemolyticus. J Bacteriol 185, 4508-4518. https://doi.org/10.1128/JB.185.15.4508-4518.2003
  23. Stewart BJ, Enos-Berlage JL and McCarter LL. 1997. The lonS gene regulates swarmer cell differentiation of Vibrio parahaemolyticus. J Bacteriol 179, 107-114. https://doi.org/10.1128/jb.179.1.107-114.1997
  24. Watnick PI, Lauriano CM, Klose KE, Croal L and Kolter R. 2001. The absence of flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol Microbiol 39, 223-235. https://doi.org/10.1046/j.1365-2958.2001.02195.x
  25. Yildiz FH and Visick KL. 2009. Vibrio biofilms: so much the same yet so different. Trends Microbiol 17, 109-118. https://doi.org/10.1016/j.tim.2008.12.004

Cited by

  1. Draft genome sequence of non-shiga toxin-producing Escherichia coli O157 NCCP15738 vol.8, pp.1, 2016, https://doi.org/10.1186/s13099-016-0096-2