DOI QR코드

DOI QR Code

Microstructure and Wear Resistance of Ti-Me-N (Me=V, Nb and Si) Nanofilms Prepared by Hybrid PVD

Hybrid PVD로 제조된 Ti-Me-N (Me=V, Si 및 Nb) 나노 박막의 미세구조와 마모특성

  • 양영환 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 곽길호 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 이성민 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 김성원 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 김형태 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 김경자 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 임대순 (고려대학교 신소재공학과) ;
  • 오윤석 (한국세라믹기술원 이천분원 엔지니어링세라믹센터)
  • Received : 2011.06.11
  • Accepted : 2011.06.29
  • Published : 2011.06.30

Abstract

Ti based nanocomposite films including V, Si and Nb (Ti-Me-N, Me=V, Si and Nb) were fabricated by hybrid physical vapor deposition (PVD) method consisting of unbalanced magnetron (UBM) sputtering and arc ion plating (AIP). The pure Ti target was used for arc ion plating and other metal targets (V, Si and Nb) were used for sputtering process at a gas mixture of Ar/$N_2$ atmosphere. Mostly all of the films were grown with textured TiN (111) plane except the Si doped Ti-Si-N film which has strong (200) peak. The microhardness of each film was measured using the nanoindentation method. The minimum value of removal rate ($0.5{\times}10^{-15}\;m^2/N$) was found at Nb doped Ti-Nb-N film which was composed of Ti-N and Nb-N nanoparticles with small amount of amorphous phases.

Keywords

References

  1. C. C. Koch, D. G. Morris, K. Lu, A. Inoue, MRS Bul., 24 (1999) 146.
  2. A. A. Voevodin, J. S. Zabinski, Thin Solid Films, 370 (2000) 223. https://doi.org/10.1016/S0040-6090(00)00917-2
  3. K. H. Kim, S.-R. Choi, S.-Y. Yoon, Surf. Coat. Technol. 298 (2002) 243.
  4. S. Veprek; J. Vac. Sic. Technol. A 17 (1999) 2401. https://doi.org/10.1116/1.581977
  5. J. Musil, Surf. Coat. Technol., 125 (2000) 322. https://doi.org/10.1016/S0257-8972(99)00586-1
  6. D. Yu, C. Wang, X. Cheng, F. Zhang, Appl. Surf. Sci., 255 (2008) 1865. https://doi.org/10.1016/j.apsusc.2008.06.204
  7. I. W. Park, S. R. Choi, J. H. Suh, C. G. Park, K.H. Kim, Thin Solid Films 447-448 (2004) 443 https://doi.org/10.1016/S0040-6090(03)01122-2
  8. K. L. Strong, J. S. Zabinski, Thin Solid Films, 406 (2002) 174. https://doi.org/10.1016/S0040-6090(01)01744-8
  9. G. S. Kim, S. Y. Lee, J. H. Hahn et al., Surf. Coat. Technol., 171 (2003) 83. https://doi.org/10.1016/S0257-8972(03)00243-3
  10. C. Mitterer, P. H. Mayrhofer, M. Beschliesser, P. Losbichler, P. Warbichler, F. Hofer, P. N. Gibson, W. Gissler, H. Hruby, J. Musil, J. Vlcek, Surf. Coat. Technol., 120-121 (1999) 405. https://doi.org/10.1016/S0257-8972(99)00489-2
  11. G. S. Kim, B. S. Kim, S. Y. Lee, J. H. Hahn, Thin Solid Films, 506-507 (2006) 128. https://doi.org/10.1016/j.tsf.2005.08.136
  12. A. A. Voevodin, J. G. Jones, J. J. Hu, T. A. Fitz, J. S. Zabinski, Thin Solid Films, 401 (2001) 187. https://doi.org/10.1016/S0040-6090(01)01615-7
  13. J. Lin, J. J. Moore, B. Mishra, M. Pinkas, W. D. Sproul, Acta Mater., 58 (2010) 1554. https://doi.org/10.1016/j.actamat.2009.10.063
  14. D. V. Shtansky, E. A. Levashov, A. N. Sheveiko, J. J. Moore, J. Mater. Synth. Proc., 6 (1998) 61. https://doi.org/10.1023/A:1022663210694
  15. J. Karch, R. Birringer, H. Gleiter, Nature, 330 (1987) 556. https://doi.org/10.1038/330556a0
  16. O. D. Sherby, J. Wadsworth, Progr. Mater. Sci., 33 (1989) 169. https://doi.org/10.1016/0079-6425(89)90004-2
  17. T. P. Mollart, J. Haupt, R. Gilmore, W. Gissler, Surf. Coat. Technol., 86-87 (1996) 231. https://doi.org/10.1016/S0257-8972(96)02950-7
  18. P. J. Martina, A. Bendavid, J. M. Cairney, M. Hoffman, Surf. Coat. Technol., 200 (2005) 2228. https://doi.org/10.1016/j.surfcoat.2004.06.012
  19. A. A. Voevodin, M. A. Capano, S. J. P. Laube, M. S. Donley, J. S. Zabinski, Thin Solid Films, 298 (1997) 107. https://doi.org/10.1016/S0040-6090(96)09145-6
  20. A. A. Voevodin, S. D. Walck, J. S. Zabinski, Wear, 203-204 (1997) 51.
  21. D. Depla, S Mahieu, J. E. Greene, Handbook of Deposition Technologies for Films and Coatings 3rd ed. Elsevier, MA USA, (2010) 253-294.
  22. E. Ribeiro, L. Rebouta, S. Carvalho, F. Vaz, G. G. Fuentes, R. Rodriguez, M. Zazpe, E. Alves, Ph. Goudeau, J. P. Riviere, Surf. Coat. Technol., 188-189 (2004) 351. https://doi.org/10.1016/j.surfcoat.2004.08.020
  23. 파인 세라믹스-단일체 세라믹스의 볼.온.디스크법에 의한 마찰.마모 시험 방법; KS L 1606 한국표준협회 2003.
  24. B. V. Crist, XPS Handbook of the Elements and Native Oxides, John Wiley & Sons, New York, 2000, 458.
  25. G. V. Samsonov (Ed.), Physico-chemical Properties of Oxides, Handbook, Metallurgy, Moscow, 1976.
  26. G. V. Samsonov, V. G. Grebenkina, Powder Metall. Met. Ceram., 7(2) (1968) 107. https://doi.org/10.1007/BF00774301
  27. G. S. Fox-Rabinovich, K. Yamamoto, A. I. Kovalev, S. C. Veldhuis, L. Ning, L. S. Shuster, A. Elfizy, Surf. Coat. Technol., 202 (2008) 2015. https://doi.org/10.1016/j.surfcoat.2007.08.067
  28. H. J. Holleck, J. Vac. Sci. Technol., 4 (1986) 2661. https://doi.org/10.1116/1.573700

Cited by

  1. Crystal Structure, Microstructure and Mechanical Properties of NbN Coatings Deposited by Asymmetric Bipolar Pulsed DC Sputtering vol.54, pp.1, 2017, https://doi.org/10.4191/kcers.2017.54.1.02