Accurate Localization of Metal Electrodes Using Magnetic Resonance Imaging

자기공명영상을 이용한 금속전극의 정확한 위치 결정

  • Joe, Eun-Hae (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Ghim, Min-Oh (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Ha, Yoon (Department of Neurosurgery, College of Medicine, Yonsei University) ;
  • Kim, Dong-Hyun (School of Electrical and Electronic Engineering, Yonsei University)
  • 조은혜 (연세대학교 전기전자공학과) ;
  • 김민호 (연세대학교 전기전자공학과) ;
  • 하윤 (연세대학교 의과대학 신경외과교실) ;
  • 김동현 (연세대학교 전기전자공학과)
  • Received : 2011.03.04
  • Accepted : 2011.03.30
  • Published : 2011.04.30

Abstract

Purpose : Localization using MRI is difficult due to susceptibility induced artifacts caused by metal electrodes. Here we took an advantage of the B0 pattern induced by the metal electrodes by using an oblique-view imaging method. Materials and Methods : Metal electrode models with various diameters and susceptibilities were simulated to understand the aspect of field distortion. We set localization criteria for a turbo spin-echo (TSE) sequence usingconventional ($90^{\circ}$ view) and $45^{\circ}$ oblique-view imaging method through simulation of images with various resolutions and validated the criteria usingphantom images acquired by a 3.0T clinical MRI system. For a gradient-refocused echo (GRE) sequence, which is relatively more sensitive to field inhomogeneity, we used phase images to find the center of electrode. Results : There was least field inhomogeneity along the $45^{\circ}$ line that penetrated the center of the electrode. Therefore, our criteria for the TSE sequence with $45^{\circ}$ oblique-view was coincided regardless of susceptibility. And with $45^{\circ}$ oblique-view angle images, pixel shifts were bidirectional so we can detect the location of electrodes even in low resolution. For the GRE sequence, the $45^{\circ}$ oblique-view anglemethod madethe lines where field polarity changes become coincident to the Cartesian grid so the localization of the center coordinates was more facilitated. Conclusion : We suggested the method for accurate localization of electrode using $45^{\circ}$ oblique-view angle imaging. It is expected to be a novelmethodto monitoring an electrophysiological brain study and brain neurosurgery.

목적: 금속전극은 MRI 안에서 자기장의 왜곡을 일으켜 영상에 인공물이 나타난다. 본 논문에서는 전극이 B0와 수직으로 놓였을때 자기장 패턴의 특성을 이용하여 oblique-view angle imaging 방식을 통해 전극의 정확한 위치를 결정하는 방법을 제시하고자 한다. 대상 및 방법: 다양한 직경과 자화율을 가진 금속 전극모델의 시뮬레이션을 통하여 전극으로 인해 왜곡되는 field map의 양상을 파악하고 해상도에 따른 turbo spin-echo (TSE) 영상의 왜곡패턴을 분석하여 일반적인 영상기 법($90^{\circ}$ view)과 $45^{\circ}$ oblique-view에서의 위치 추정 기준을 마련하였으며 3.0T 임상용 장비에서 실제 전극의 TSE영상을 획득하여 시뮬레이션과 대조 검증하였다. 상대적으로 자기장의 왜곡에 민감한 gradient-refocused echo (GRE)시퀀스에서는 위상 영상을 이용해 위치를 추정하였다. 결과: 금속전극이 B0와 수직일 때 전극을 통과하는 $45^{\circ}$ 선상에서는 자기장 패턴의 변화가 매우 적었다. TSE 시퀀스의 경우 $45^{\circ}$ oblique-view 영상에서는 자화율의 크기에 관계없이 위치 추정기준이 잘 들어 맞았으며 자기장 왜곡에 의한 픽셀이 동양상이 양방향 대칭적으로 일어나므로 해상도가 낮은 경우에도 정확한 위치 추정이 가능하였다. 또한 GRE 시퀀스를 사용하였을때 $45^{\circ}$ oblique-view에서는 위상의 극성이 변화하는 선이 직교좌표계와 일치하기 때문에 일반적 방법보다 위치추정이 용이하였다. 결론: 시뮬레이션과 실제영상을 이용하여 일반적인 $90^{\circ}$ view에서보다 $45^{\circ}$ oblique-view에서 금속전극의 위치추정이 용이함을 확인하였다. 이는 전기 생리학적인 뇌연구 및 뇌수술 등을 MRI로 모니터링 하는데 적용 가능할 것으로 기대된다.

Keywords

References

  1. Schrader B, Hamel W, Weinert D, Mehdorn HM. Documentation of electrode localization. Mov Disord 2002;17:S167-S174 https://doi.org/10.1002/mds.10160
  2. Ludeke KM, Roschmann P, Tischler R. Susceptibility artifacts in NMR imaging. Magn Reson Imaging 1985;3:329-343 https://doi.org/10.1016/0730-725X(85)90397-2
  3. Ladd ME, Erhart P, Debatin JF, Romanowski BJ, Boesiger P, McKinnon GC. Biopsy needle susceptibility artifacts. Magn Reson Med 1996;36:646-651 https://doi.org/10.1002/mrm.1910360423
  4. Muller-Bierl B, Graf H, Lauer V, Steidle G, Schick F. Numerical modeling of needle tip artifacts in MR gradient echo imaging. Med Phys 2004;31:579-587 https://doi.org/10.1118/1.1640971
  5. Martinez-Santiesteban FM, Swanson SD, Non DC, Anderson DJ. Magnetic field perturbation of neural recording and stimulating microelectrodes. Phys Med Biol 2007;52:2073-2088 https://doi.org/10.1088/0031-9155/52/8/003
  6. Liu H, Hall WA, Martin AJ, Truwit CL. Biopsy needle tip artifact in MR-Guided Neurosurgery. J Magn Reson Imaging 2001;13:16-22 https://doi.org/10.1002/1522-2586(200101)13:1<16::AID-JMRI1003>3.0.CO;2-B
  7. Matsui T, Koyano KW, Koyama M, et al. MRI-based localization of electrophysiological recording sites within the cerebral cortex at single-voxel accuracy. Nat Methods 2007;4:161-168 https://doi.org/10.1038/nmeth987
  8. Truwit CL, Liu H. Prospective stereotaxy: a novel method of trajectory alignment using real-time image guidance. J Magn Reson Imaging 2001;13:452-457 https://doi.org/10.1002/jmri.1065
  9. Martin AJ, Larson PS, Ostrem JL. Placement of deep brain stimulator electrodes using real-time high-field interventional magnetic resonance imaging. Magn Reson Med 2005;54:1107-1114 https://doi.org/10.1002/mrm.20675
  10. Zrinzo L, Zrinzo LV, Tisch S, et al. Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization. Brain 2008;131:1588-1598 https://doi.org/10.1093/brain/awn075
  11. Oya H, Kawasaki H, Dahdaleh NS, Wemmie JH, Howard MA. Stereotactic atlas-based depth electrode localization in the human amygdala. Stereotact Funet Neurosurg 2009;87:219-228 https://doi.org/10.1159/000225975
  12. Salomir R, De Senneville BD, Moonen CTW. A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility. Concept Magn Reson B 2003; 19B:26-34 https://doi.org/10.1002/cmr.b.10083
  13. Koch KM, Papademetris X, Rothman DL, de Graaf RA. Rapid calculations of susceptibility-induced magnetostatic field perturbations for in vivo magnetic resonance. Phys Med Biol 2006;51:6381-6402 https://doi.org/10.1088/0031-9155/51/24/007
  14. Hopper TAJ, Vasilic B, Pope JM, et al. Experimental and computational analyses of the effects of slice distortion from a metallic sphere in an MRI phantom. Magn Reson Imaging 2006;24:1077-1085 https://doi.org/10.1016/j.mri.2006.04.019