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Abstract

In cell biology area, microscopy enables detecting objects inside cells that are stained or fluorescently
tagged. It is disadvantageous for observing these objects because of the noisy characteristics of their

environmental surrounding. In this paper, a framework is proposed to increase the throughput and reliability

for analysis of these images. First, we apply adaptive beamlet transform to extract edges meaningfully

followed by orientation, location, and length in different scales. Then, a post-process is implemented to extend
and map them onto original image. Our proposed scheme is compared with Canny edge detector and
conventional beamlet transform from four evaluation aspects. It produces better results when experiments are
conducted on real images. Much better results for observing internal parts make this framework competitive

for analysis of cell images

Keywords : Adaptive beamlet transform, cell boundary observation, evaluation criterions, edge extraction

I. Introduction

The analysis of biological images is a time consuming
task in many microbiological and biomedical laboratories.
There is an ever-increasing need for analyzing large
numbers of images acquired with microscopes in
connection with different assays, where one wishes to
measure the number of cells, the size of certain objects,
the area occupied by cells, etc [1]. Recent years a
number of methods have been developed to facilitate
some of these tasks [2-31[4]. Nevertheless, many of the
tasks are still performed manually, and there is a great
need for accurate and reliable methods that can automate
the image analysis and thus increase the throughput in
these assays.

Edge is one of the most important features in images,
which contains lots of information. The effect of edge
detection has a
segmentation and pattern recognition [5]. The problem of
edge detection has a long history in computer vision.
The simplest edge detection schemes compute the

numerous influence on image

approximate gradient of the intensity map of the image
by applying a filter, such as the Sobel, Prewitt or
Roberts filter [6], and then use a thresholding to extract
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the edges identified as areas with large gradient. other
methods use the second derivatives of images and
search for zero—crossings instead of maxima. More
sophisticated edge detectors such as the one developed
uses the intensity gradient, after it has been
appropriately smoothed, search for local maxima only in
the gradient direction, and apply additionally a hysteretic
thresholding to maximize the edge connectivity.
However, they are still difficult to extract features
embedded in extremely high noise or the SNR (signal to
noise) is so low that none of the pixel values is likely
to yield significance. Biological images such as available
from electron or light microscopy are rather sensitive to
noise and when smoothing is applied to reduce the noise,
the edges also are smoothed to the extent that they
cannot be detected.

A number of edge detection methods employ 2D
Gabor filters. These filters are characterized by
frequency, width and direction and have been mainly
applied to object recognition problems [7]. Other
powerful edge detection methods are also available, such
as snakes or active contours , which also use gradient
information from the image to evolve a connected
contour that minimizes its energy in the landscape
defined by the image [8][9]. These methods successfully
detect boundaries of objects with an intensity difference
compared to the background, but in biological images, it
is often the case that the interior and the exterior of the
object of interest show no difference in intensity.
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In this paper, we design a framework to extract the

edge in the Dbiological images, with challenge

characteristics mentioned above, based on adaptive

beamlet transform. Beamlets can be generated by

recursive dyadic partitioning, vertex marking and
connecting. The beamlet transform [10] is the collection
of all line integrals formed by viewing the image as a
piecewise constant object and integrating along line
segment in the beamlet dictionary, and draw a line
segment depicting that beamlet. All these beamlets in
different scales are fused to generate an edge map at
the image pixel level. The proposed method detects lines
with any orientation, location and length in different
scales and a maximal beamlet coefficient is computed to
avoid subjective setting. The output results after
extending and mapping edges show better performance
than conventional methods with evaluation criterions as
well as with detecting for real images. It can be suitable
to apply this scheme to detect objects for biological
image processing.

In the next about the

and beamlet

section, background

characteristics of biological images
transform approach are shown. The framework and
implementation of edge detection are presented in section
. The experiment and results are given in section IV,

and section V brings to the conclusions.
II. Background

A. Biological Image Characteristics

Biological specimen images are often low-contrasted.
Although negative staining with heavy metal is used,
the contrast is still not sufficient to separate clearly the
membranes from the background with a simple threshold
method. The stain tends to outline the structure of the
specimen, but the gray level of the membrane itself is
still very low, unless it is coated with stain or
aggregated. The more interesting areas, the crystal-like
non-aggregated membranes to be studied at high
magnification, are the more difficult to identify [11].
Then, among the drawbacks of staining, artifacts and
uneven staining are those that can complicate the
segmentation at the medium magnification. This leads to
a heterogeneous gray level of the background and an
uneven contrast and width of the edges [12]. Finally, the
size and the shape of the objects can vary greatly.
Thus, the identification of the membranes based on

pattern approach could not appropriate.

B. Beamlet Transform

Fig. 1. Four Beamlets at various scales, locations,
and orientations.

We consider an image as a function residing on a
(0,1]<[0,1] unit square. It is a piecewise constant, with
pixels of side 1/n by 1/n. The collection of beamlets
B,s 1is a multi-scale collection of line segments
occurring at a full range of orientations, positions, and
scales. It is generated as following [10].

Dyadic Subdivision: We form all dyadic sub-squares
of [0,1F in the obvious way; to begin we divide the unit
into four length 1/2. Each
divided into four smaller
sub-squares, and so on. Fig. 1 shows some sub-squares
after 0, 1, 2 or 3 steps of subdivision. We continue until
we have created all dyadic squares of side 1/n-by-1/n
or larger.

Vertex Labeling: For definiteness, think of o as 1/n,
although in certain applications ¢ should be far smaller.
Traversing the boundary of each sub-square, we mark
out equally spaced vertices at spacing. Note that the
distance between neighboring vertices is 0, no matter

sub-squares of side
sub-square is then

which scale sub-square we consider.

Connection of the dots: In each sub-square, form the
collections of all line segments connecting any pair of
vertices. Any such line segment is called a beamlet.

Let flz;,2,) be a continuous function on [0,1]° . The
beamlet transform of f is the collection of all line
integrals.

Ty (b) = ’f[z(l)}dl,bEB,,ﬁ (D

The integrals are being taken along line segments
bEB, 5. Here z(I) traces out the beamlet b along a
unit speed path. The digital beamlet transform of an

nXn array (f ihiz) is understood to be the beamlet
transform of the function f which is defined on the
continuum by interpolation of the values (fil.,z‘z)°

f(:clvxz) = Zfilxi2¢i1>iu (-Tl,xz) (2)

i1y

Where ¢, ; (z1,2,) is a specified family of continuous
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interpolation functions. There are several ways the

functions qé,-h,»,)(wp:z@) may be chosen. The functions

i, {z,,2,) may be chosen to obey the conditions

f

pixel(i’)i'y)

)

&, ; (z1,2,)dzdz, =4, it (3)

o
iy iy

Where §;; is the Kronecker symbol. Then f is a
function that obeys

fiir = Ave{flpizel (4,3,) } (4)

In other words, the values of fim-2 are viewed as

pixel-level averages of the continuous function f.

C. Extraction of features
Suppose we have a noisy nXn perhaps

contains somewhere within it, a faint image of a line

image,

segment of unknown length, orientation and position
[13-14]. We model these data as following

Yoo = A Gz, 0<ini<n (5)

ty

Where ¢ is a noise level z;; is a white Gaussian

noise. A is an unknown parameter and

gz;: =¢(i,,ippy;) is the observed effect at the sensor

1ty

array of an unknown beamlet vpv; . The problem is to

set the simple null hypothesis
Hy: A=0 6

against the composite alternative

H:4>0 yvyyelol)? (N

where H, denotes for square decorated by choosing
scale level, and H, denotes for square left undecorated.

This is composite because of the wide range of
possible endpoint pairs being considered. We consider
the random field

Vi) = (B y=max{T, (b)/ VL) } ®
Where T(y) is the beamlet transform of data y. L(b) is

the Euclidean distance of beamlet b. W;U;l is the filter

matched to H —

"

livipron)
I GCirsip ) |

We reject H, if Y[0,1]lexceeds a certain threshold.

('ip?:z) = )

hyln

Fig.2 shows the extraction of feature in an image.
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e
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Fig. 2. A beamlet decorated recursive dyadic partition
and its associated structure.

D. Beamlet Transform of each square

After we obtain each square from the image, we
take the transformation onto each
detailed below.

Step 1: Start from northwest corner point in the

sub_square as

sub-square, vertices are marked clockwise at equal
distance as p(0),p{1),p(2),-.p(pnum —1). Where pnum
is the number of points on the boundary of sub-square.

Step 2 Set start-point p(0) , end-point p(l), a
start-point and an end-point correspond to a line
segment b .

Step 3 Locate all pixel points in the line segment
through interpolation methods introduced above. Pixel
points are [(0),1{1),...l{Ilnum—1) where Inum is the
number of pixels point in the line segment.

Step 4: Calculate sum of grey value of all pixel point
in one line segment

Inum—1

sum —
e

G(d(3)) a0

where G(d) denotes the gray value of pixel at point d.
Step 5' Calculate beamlet transform of the line

segment

Tf(b)=25um/lnum (11}

Step 6: Check the below conditions:
If start-point is not plnum—1),
{end-point=end-point+1;
repeat step 3, step 4, step 5}
else
{star-point=start-point+1;
if start-point=p{num), {procedure stop)
else {repeat step 3, step 4, step 5} }

III. The Proposed Method

A. Algorithm of Edge Extraction

As mentioned above, it encounters much challenge for
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methods to extract the edge in the biological images in

applications, especially low-light ones such as
fluorescence microscopy. Here, we proposed a novel
method to handle kinds of these images, based on
adaptive beamlet transform.

The algorithm of [10] is proposed to extract line from
the images. There are two problems when using this
algorithm to detect edge directly. Discrete beamlet
transform algorithm firstly needs set a certain threshold
and test the simple null hypothesis to decide whether to
draw a line segment to depict one beamlet. The
problems can arise if the threshold is low and much
noise in the image, and erroneous edge lines might be
generated. To overcome this, we calculate a maximal
beamlet coefficient to avoid subjective setting and
declare pixels as edge pixels if gradient magnitude is
larger than those of pixels at its both sides in the
direction of maximum intensity change as stated in
[15](16]. The that the formula
7(b)/VL(b) defined in eq.(8) needs to be searched for

the maximum, otherwise for the minimum when the

second problem is

gray value of line is larger than surrounding one. Yet,
on the edge of the gray images, the gray value could be
larger or smaller than surrounding one. Therefore, we
improved the algorithm of [10], and proposed a new
edge detection algorithm for gray images. A new
BC, = T(b)/L(b),

represents the weighted average of gray value in current

parameter 1s defined as

which

beamlet. In every dyadic square, the parameters of the
beamlet that may be the most probable edge in every
direction are compared, then the edge is determined
eventually.

The algorithm for the proposed method is described as
following steps:

Step 1t Set the
nWidth X nHeight, s = s,

scale of 1image squares of

Step 2° Decompose the image into scale fixed
sub-squares according to recursive dyadic partitioning,
nWidth _ nHeight

Su >< 2

Step 3 Transform each sub-square.

each sub-square is

So

Step 4: The parameter of every beamlet is calculated
direction BC,=T(b)/L(b). T(b) is the
beamlet transform of image along b, and L(b) is the
Euclidean length of a beamlet.

in current

Step 5 In current direction, all of the beamlets are
analyzed one by one. Suppose the parameter of current
beamlet is BC,; the parameters of two

adjacent are BC,, and BC,, BC. is calculated

beamlets

BC, = |BC;1“BCL2|+|BC;1"BQ3| 12)

where BC,. is the beamlet coefficient at the current

direction.
Step 6: The
(Mox — BC,) following the current direction is calculated

maximum of beamlet coefficient
in current direction . If Max —BC, is larger than BC. |,
BC,  will be updated with the new value. The starting

point and the terminal point of the beamlet
corresponding to Max — BC, are preserved.

Step 7 The maximum of Maex —BC, is calculated in
all dyadic squares of an image. We define the maximum
of Max —BC, of all dyadic squares as M and make the

normalization

Max — BC. = Max —BC,/ M 13)

Step 8: Using specified threshold 7h, with 0<7h <1
, then mark selected pixels with gradient magnitude
larger than 7h as strong pixels, and weak pixels
corresponding to pixels with magnitude less than Th.

Step 9 Select all strong pixels, and all weak pixels
that are connected to strong pixels in all directions.

Step 10: Extend the extracted
directional field computed

edges along the
to connect neighboring edge
segments.

Step 11: Map the edges onto the original image and

perform processing suitable to the application.

B. Extending the Edges along the Directional Field
the thresholding
designed to reduce ’'streaking’ (the subdivision of edges

Even though in algorithm is
into short segments), the edges that are extracted from
steps 1 to step 9 of algorithm are not always connected
to the desired extent. The reason for this may be that
the influence of nearby edges prevents some pixels from
being local maxima, so that they are ruled out by the
non-maximal suppression, or some pixels have a value
smaller than the low threshold. However, they are
actually parts of the edge.

As a remedy, the edges may be extended as follows:
starting at the end points of the already selected edge
segments, we take a step in the direction given by the
directional field, away from the edge segment we start
at. We then continue moving along the directional field
until a specified number of steps have been taken, or we
end up on a different edge segment. If we end up on a
different edge segment, the entire path we moved along
is included as an edge. A threshold is also employed to
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exclude pixels with small magnitude to be included in
the extension.

C.  Post Processing

The output from the scheme described so far is not
always, what one would like to present as a final
output. In particular, one might want to make sure that
the edges form a connected loop, remove isolated edge
segments, and thin the edges. PFurthermore, since
parameters are not defined on the same grid as the
the selected edges will

interpolated onto the

need to be
grid.  This
post-processing has to be adapted to the particular

original image,
original image

application.
IV. Experiment and Results

A. Evaluation Criterions

In order to analyze the performance of the proposed
algorithm quantification, we have applied an evaluation
method as in [17]. By comparison with Canny algorithm,
our method is evaluated from fours aspect: continuity of
the edge, rate of wrong detection, rate of miss detection,
and anti-noise performance.

Line—fit degree L of edge. For every detected edge
pixel (i,5), we compute the number n;; of other edge
pixels in its 3X3 neighboring window. I n;; <2, the
edge pixel {i,7) is judged as an isolated point, otherwise
a joint point. We define

p=1- (14)

where Num,;,, is the number of isolated points,
Num,,, is the number of edge pixels. As we know, the
larger the Num,,,, the smaller the line-fit degree is.
Detection degree of false edges R,: Numy,, denotes
for the number of pixels on the edge detected. Those
pixels also belong to the smooth area of referenced edge
image. Num,,, denotes for the number of pixels that
belong to the smooth are in referenced image. The rate

of wrong detection is given as

Num false
= T (15)
i N UMy g0
Non-detection degree of true edges R Num,,,

presents the number of undetected pixels of true edge

compared with reference image. The rate of miss
detection is defined as
o N UM it
T (16)
UM

Parameter E is a total evaluation, which is the
weighted sum of three parameters defined below

FE=al+8(1-R)+~+(1—R) an

where a+g8+y=1. «, B, and v are the weighted
coefficients. The more parameter E is close to one, the
better the performance of scheme is.

B. Results and Discussion

We will implement the testing 256 X256 gray image
to inform and sketch out the very high adaptation for
biological The evaluation method needs a
reference edge image to compare with others. Here, the

reference image is as in Fig.3(b). The Canny algorithm,

images.

method using beamlet transform and our proposed
method are used to detect edge respectively. In Canny
algorithm, we choose the parameters: 0.05 and 0.25. In
our method, we implement at scale 6, threshold Th=0.2.
The weighted coefficients to evaluate are chosen as
a=03,3=04,v=03.

When there is no noise, the result images of Canny
algorithm and beamlet transform algorithm are shown as
TFig.3(c) and Fig.3(d) respectively. Our result is shown in
Fig.3{e) and Fig.3(f). After that, we change the noise by
adding noise at different levels. The edge of Canny
method, by using beamlet, by using only adaptive
beamlet and, by using our scheme is shown as Table 1

(a) (b) {c)

(d} (e) )

Fig. 3. Testing image to evaluate the performance of
each method (a) Test image (b) Reference edge
(c) Edge detected by using Canny’'s method (d) Edge
detected by using beamlet transform (e) Edge detected
by using adaptive beamlet (EAB) () Edge by extending
and mapping (EEM).

image

In the image of Fig.3{a), there are two oblique lines,
the output of Cany algorithm is inferior while beamlet
transform method and our algorithm perform much
surpassing results. The proposed algorithm of detecting
the edge from gray images is of better continuity. The

rate of wrong detection and miss detection are lower
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than beamlet transform method. The anti-noise
performance of edge extraction by using only adaptive
beamlet transform is a little lower than beamlet
method. However, it is very important to compare the
total evaluation parameter by using complete framework.

The post-processing it robust to noise

step helps
influence. As illustrated in Fig.4, this parameter E of our
scheme is always better than one of beamlet method. It
is evident that the proposed algorithm can adapt to the
very noisy images and work with the surpass
performance. They are essential factors to apply this
method for processing biological

low~-contrast, much noisy.

images that are

Table 1. Parameters of performance

SNR  Algorithm L 1-K 1—-R E
no Canny 0.832  0.831 0.826 0.830
noise Beamlet 0978  0.997 0.983 0.987
EAB 0.980 0.999 0.994 0.992
EEM 0982 0999 0.994 0.992
100db Canny 0.830  0.826 0.824 0.827
Beamlet 0.978  0.997 0.983 0.987
EAB 0.980  0.999 0.988 0.990
EEM 0.980 0999 0.994 0.992
70db Canny 0.828  0.826 0.820 0.825
Beamlet 0.978 0.997 0.983 0.987
EAP 0.975 0.998 0.987 0.988
EEM 0.978 0.998 0.988 0.989
50db Canny 0.824 0.824 0.817 0.822
Beamlet 0.978 0.977 0.983 0.979
EAB 0.975 0.996 0.985 0.986
EEM 0.978 0.996 0.985 0.987
20db Canny 0.821 0.820 0.813 0.818
Beamlet 0964  0.992 0.974 0.978
EAB 0970  0.992 0.980 0.982
EEM 0972  0.993 0.980 0.982

# Canny

% Beamiet

Tutal Bvalabion

EEIAS

m TEMN

Mo oise 2Ddb Sadb 72db 100db

Noise tdb}

Fig. 4. The total evaluation of each method with
different noise.

We apply our method to an electron microscopy image
showing a vesicle with some internal structure as in
Fig.5(a). Our intention is to find the outer membranes of
the vesicle.

This task is difficult for several reasons. The image
is noisy and full of small structures, so it will detect

edges everywhere. Furthermore, smoothing the image
will not help much, since it will smooth the thin edges
as much as the other structures, making it harder to
detect the edges. It is important to note that edge
linking is one of vital task cell boundary extraction [18].
An edge is the boundary between an object and the
background, and indicates the boundary between
overlapping objects. This means that if the edges in an
image can be identified accurately, all of the objects can

be located and basic properties such as area, perimeter,

and shape can be measured. This requires a plain of
edges detected [4].

(a) (b)

() (d)

(e)

Fig. 5. Edge extraction on a microscopy image of a

vesicle (a) Original image: an electron microscopy image
(c) Edge
extraction using beamlet transform (d) Edge extraction

of a vesicle (b) Edge extraction using Canny

using our proposed method (e) The final results of the

edge extraction overlaid on the original image, after the
edges have been extracted and extended along the

directional field to connect the different edge segments.

Beamlet provide a multi-scale decomposition of the
image that makes it possible to pick just a few scales
and ignore for example of the finest scale, where most
of the noise is, and the coarsest scale, where the large
differences in intensity are. Beamlet also provide us
with information about directionality in the image, which
enables us to search for structures with a strong
direction, and trace along them.

The final result using threshold 0.33, and extending
the edges along the directional field to connect the
Fig. 5(e), with

the edges overlaid in white on the original image. The

adjacent edge segments, is shown on
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outer membranes of the vesicle are successfully detected
almost everywhere, and the most prominent internal
membranes are also detected by our proposed scheme.

{a) (b)

(c) (d)

Fig. 6. Edge detection on the tube formation assay

(a) Original image: an image of a tube formation
assay (b) Edge extraction using beamlet transform
{(c) Edge extraction using our proposed method (d)
The output result of the edge extraction overlaid

on the original image.

QOur edge detection scheme is compared to the method
using conventional beamlet transform. The thresholds
have been chosen to show the edges of the vesicle
clearly, while eliminating the surrounding structures as
much as possible. It is clear that our scheme detects the
vesicle better than the other. The
conventional beamlet and Canny gives multiple responses
to the membranes as shown in Fig.5(b) and Fig.blc),

membranes

and detects most of the smaller structures, which makes
it hard to distinguish the interesting structures from the
background.

As a second example, our method was applied to a
light microscopy image from a tube formation assay as
in Fig. 6(a). In a tube formation assay, endothelial cells
are grown on a dish, and their ability to form vessels
(or tubes) is investigated by counting the number of
tubes seen in the image and computing their length, as
well as extracting network information such as the
number of junctions. This example is used to show how
elongated multicellular structures can be detected using
our scheme. In the Fig. 6(c¢), the results from the edge
detection scheme are overlaid in black on the original
image. The edges have been extended to connect
adjacent edges. Finally, the edges were dilated and then
thinned to fill possible holes in the selected areas.

Almost all of the tubes are detected, only a few weaker
tubes are not marked. The broader, sheet-like structures
are marked because they show internal intensity
variations, and in some cases two parallel tubes have
been joined together because they can not be
distinguished at the level we use.

From above experiments, our proposed scheme
performs a little superior than other methods using
evaluation criterion stated in [17]. However, it is noted
that we implement these results to only validate for
ability to apply this biological image
processing. In other words, as experimental resulis of
real images, although other methods extracted edges
exactly, it is hard to determine the boundary of cell
correctly due to many detected edges as in Fig.5(b-c}
and Fig.6(b). A post-processing step to extend and map
edges in our framework can overcome these problems
by outputting plain edges as illustrated in Fig.5(d) and

Fig.6(c).

scheme for

V. Conclusions

In this paper, a framework was proposed to extract
the edge with various orientation, location and length
based on adaptive beamlet transform. Here, the beamlet
transform was adapted to detect and track edges in very
noisy images. The results  showed
preponderant performance in comparison with Canny

edge detection and conventional beamlet transform about

experiment

four aspects: continuity of edges, wrong detection, miss
detection rate, anti-noise performance. On the other
hand, by figuring out a post-processing step, the method
become more powerful to process the biological images
which can overcome many limitations in vision.
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