Comparative Analysis for In Vitro Differentiation Potential of Induced Pluripotent Stem Cells, Embryonic Stem Cells, and Multipotent Spermatogonial Stem Cells into Germ-lineage Cells

  • Go, Young-Eun (Dept. of Biomedical Science, College of Life Science, CHA University) ;
  • Kim, Hyung-Joon (Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University) ;
  • Jo, Jung-Hyun (Dept. of Biomedical Science, College of Life Science, CHA University) ;
  • Lee, Hyun-Ju (Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University) ;
  • Do, Jeong-Tae (Dept. of Biomedical Science, College of Life Science, CHA University) ;
  • Ko, Jung-Jae (Dept. of Biomedical Science, College of Life Science, CHA University) ;
  • Lee, Dong-Ryul (Dept. of Biomedical Science, College of Life Science, CHA University)
  • 투고 : 2011.01.16
  • 심사 : 2011.03.12
  • 발행 : 2011.03.31

초록

In the present study, embryoid bodies (EBs) obtained from induced pluripotent stem cells (iPSCs) were induced to differentiate into germ lineage cells by treatment with bone morphogenetic protein 4 (BMP4) and retinoic acid (RA). The results were compared to the results for embryonic stem cells (ESCs) and multipotent spermatogonial stem cells (mSSCs) and quantified using immunocytochemical analysis of germ cell-specific markers (integrin-${\alpha}6$, GFR-${\alpha}1$, CD90/Thy1), fluorescence activating cell sorting (FACS), and real time-RT-PCR. We show that the highest levels of germ cell marker-expressing cells were obtained from groups treated with 10 ng/$m{\ell}$ BMP4 or 0.01 ${\mu}M$ RA. In the BMP4-treated group, GFR-${\alpha}1$ and CD90/Thy-1 were highly expressed in the EBs of iPSCs and ESCs compared to EBs of mSSCs. The expression of Nanog was much lower in iPSCs compared to ESCs and mSSCs. In the RA treated group, the level of GFR-${\alpha}1$ and CD90/Thy-1 expression in the EBs of mSSCs Induced pluripotent stem cells, Mouse embryonic stem cells, Multipotent spermatogonial stem cells, Germ cell lineage, Differentiation potential. was much higher than the levels found in the EBs of iPSCs and similar to the levels found in the EBs of ESCs. FACS analysis using integrin-${\alpha}6$, GFR-${\alpha}1$, CD90/Thy1 and immunocytochemistry using GFR-${\alpha}1$ antibody showed similar gene expression results. Therefore our results show that iPSC has the potential to differentiate into germ cells and suggest that a protocol optimizing germ cell induction from iPSC should be developed because of their potential usefulness in clinical applications requiring patient-specific cells.

키워드

참고문헌

  1. Anderson EL, Baltus AE, Roepers-Gajadien HL, Hassold TJ, de Rooij DG, van Pelt AM, Page DC (2008) Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci U S A 105:14976-14980. https://doi.org/10.1073/pnas.0807297105
  2. Bowles J, Koopman P (2007) Retinoic acid, meiosis and germ cell fate in mammals. Development 134:3401-3411. https://doi.org/10.1242/dev.001107
  3. Childs AJ, Saunders PT, Anderson RA (2008) Modelling germ cell development in vitro. Mol Hum Reprod 14:501-511. https://doi.org/10.1093/molehr/gan042
  4. Clark AT, Bodnar MS, Fox M, Rodriquez RT, Abeyta MJ, Firpo MT, Pera RA (2004) Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet 13:727-739. https://doi.org/10.1093/hmg/ddh088
  5. De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100-106. https://doi.org/10.1038/nbt1274
  6. Drukker M (2008) Recent advancements towards the derivation of immune-compatible patient-specific human embryonic stem cell lines. Semin Immunol 20:123-129. https://doi.org/10.1016/j.smim.2007.11.002
  7. Fujiwara T, Dunn NR, Hogan BL (2001) Bone morphogenetic protein 4 in the extraembryonic mesoderm is required for allantois development and the localization and survival of primordial germ cells in the mouse. Proc Natl Acad Sci U S A 98:13739-13744. https://doi.org/10.1073/pnas.241508898
  8. Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ (2004) Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427:148-154. https://doi.org/10.1038/nature02247
  9. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199-1203. https://doi.org/10.1038/nature04697
  10. He Z, Jiang J, Hofmann MC, Dym M (2007) Gfral silencing in mouse spermatogonial stem cells results in their differentiation via the inactivation of RET tyrosine kinase. Biol Reprod 77:723-733. https://doi.org/10.1095/biolreprod.107.062513
  11. Imamura M, Aoi T, Tokumasu A, Mise N, Abe K, Yamanaka S, Noce T (2010) Induction of primordial germ cells from mouse induced pluripotent stem cells derived from adult hepatocytes. Mol Reprod Dev 77:802-811. https://doi.org/10.1002/mrd.21223
  12. Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A, Shinohara T (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119:1001-1012. https://doi.org/10.1016/j.cell.2004.11.011
  13. Kanatsu-Shinohara M, Lee J, Inoue K, Ogonuki N, Miki H, Toyokuni S, Ikawa M, Nakamura T, Ogura A, Shinohara T (2008a) Pluripotency of a single spermatogonial stem cell in mice. Biol Reprod 78:681-687. https://doi.org/10.1095/biolreprod.107.066068
  14. Kanatsu-Shinohara M, Muneto T, Lee J, Takenaka M, Chuma S, Nakatsuji N, Horiuchi T, Shinohara T (2008b) Long-term culture of male germline stem cells from hamster testes. Biol Reprod 78:611-617. https://doi.org/10.1095/biolreprod.107.065615
  15. Kim HJ, Lee HJ, Lim JJ, Kwak KH, Kim JS, Kim JH, Han YM, Kim KS, Lee DR (2010a) Identification of an intermediate state as spermatogonial stem cells reprogram to multipotent cells. Mol Cells 29:519-526. https://doi.org/10.1007/s10059-010-0064-5
  16. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ (2010b) Epigenetic memory in induced pluripotent stem cells. Nature 467:285-290. https://doi.org/10.1038/nature09342
  17. Koubova J, Menke DB, Zhou Q, Capel B, Griswold MD, Page DC (2006) Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci USA 103:2474-2479.
  18. Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, Korving JP, Hogan BL (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo genes. Dev 13:424-436
  19. Lee JE, Kang MS, Park MH, Shim SH, Yoon TK, Chung HM, Lee DR (2010a) Evaluation of 28 human embryonic stem cell lines for use as unrelated donors in stem cell therapy: implications of HLA and ABO genotypes. Cell Transplant 19(11):1383-95. https://doi.org/10.3727/096368910X513991
  20. Lee LK, Ueno M, Van Handel B, Mikkola HK (2010b) Placenta as a newly identified source of hematopoietic stem cells. Curr Opin Hematol 17:313-318. https://doi.org/10.1097/MOH.0b013e328339f295
  21. Lee TH, Song SH, Kim KL, Yi JY, Shin GH, Kim JY, Kim J, Han YM, Lee SH, Shim SH, Suh W (2010c) Functional recapitulation of smooth muscle cells via induced pluripotent stem cells from human aortic smooth muscle cells. Circ Res 106:120-128. https://doi.org/10.1161/CIRCRESAHA.109.207902
  22. Lin Y, Gill ME, Koubova J, Page DC (2008) Germ cell-intrinsic and -extrinsic factors govern meiotic initiation in mouse embryos. Science 322:1685-1687. https://doi.org/10.1126/science.1166340
  23. Matthay MA, Thompson BT, Read EJ, McKenna DH Jr, Liu KD, Calfee CS, Lee JW (2010) Therapeutic potential of mesenchymal stem cells for severe acute lung injury. Chest 138:965-972. https://doi.org/10.1378/chest.10-0518
  24. Nagano MC (2007) In vitro gamete derivation from pluripotent stem cells: progress and perspective. Biol Reprod 76:546-551. https://doi.org/10.1095/biolreprod.106.058271
  25. Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R, Gromoll J, Engel W (2006a) Derivation of male germ cells from bone marrow stem cells. Lab Invest 86:654-663. https://doi.org/10.1038/labinvest.3700429
  26. Nayernia K, Li M, Jaroszynski L, Khusainov R, Wulf G, Schwandt I, Korabiowska M, Michelmann HW, Meinhardt A, Engel W (2004) Stem cell based therapeutical approach of male infertility by teratocarcinoma derived germ cells. Hum Mol Genet 13:1451-1460. https://doi.org/10.1093/hmg/ddh166
  27. Nayernia K, Nolte J, Michelmann HW, Lee JH, Rathsack K, Drusenheimer N, Dev A, Wulf G, Ehrmann IE, Elliott DJ, Okpanyi V, Zechner U, Haaf T, Meinhardt A, Engel W (2006b) In vitro-differentiated embryonic stem cells give rise to male gametes that can generate off spring mice. Dev Cell 11:125-132. https://doi.org/10.1016/j.devcel.2006.05.010
  28. Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M (2009) A signaling principle for the specification of the germ cell lineage in mice. Cell 137:571-584. https://doi.org/10.1016/j.cell.2009.03.014
  29. Orwig KE, Shinohara T, Avarbock MR, Brinster RL (2002) Functional analysis of stem cells in the adult rat testis. Biol Reprod 66:944-949. https://doi.org/10.1095/biolreprod66.4.944
  30. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134:877-886. https://doi.org/10.1016/j.cell.2008.07.041
  31. Parolini O, Alviano F, Bagnara GP, Bilic G, Buhring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido T, Portmann-Lanz CB, Sankar V, Soncini M, Stadler G, Surbek D, Takahashi TA, Redl H, Sakuragawa N, Wolbank S, Zeisberger S, Zisch A, Strom SC (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international work shop on placenta derived stem cells. Stem Cells 26:300-311. https://doi.org/10.1634/stemcells.2007-0594
  32. Pellegrini M, Grimaldi P, Rossi P, Geremia R, Dolci S (2003) Developmental expression of BMP4/ALK3/SMAD5 signaling pathway in the mouse testis: a potential role of BMP4 in spermatogonia differentiation. J Cell Sci 116:3363-3372. https://doi.org/10.1242/jcs.00650
  33. Reding SC, Stepnoski AL, Cloninger EW, Oatley JM (2010) THY1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis. Reproduction 139:893-903 https://doi.org/10.1530/REP-09-0513
  34. Seandel M, James D, Shmelkov SV, Falciatori I, Kim J, Chavala S, Scherr DS, Zhang F, Torres R, Gale NW, Yancopoulos GD, Murphy A, Valenzuela DM, Hobbs RM, Pandolfi PP, Rafii S (2007) Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449:346-350. https://doi.org/10.1038/nature06129
  35. Shinohara T, Avarbock MR, Brinster RL (1999) Beta1-and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci USA 96:5504-5509. https://doi.org/10.1073/pnas.96.10.5504
  36. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-676. https://doi.org/10.1016/j.cell.2006.07.024
  37. Tegelenbosch RA, de Rooij DG (1993) A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res 290:193-200. https://doi.org/10.1016/0027-5107(93)90159-D
  38. Toyooka Y, Tsunekawa N, Akasu R, Noce T (2003) Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA 100:11457-11462. https://doi.org/10.1073/pnas.1932826100
  39. Wei W, Qing T, Ye X, Liu H, Zhang D, Yang W, Deng H (2008) Primordial germ cell specification from embryonic stem cells. PLoS One 3:e4013. https://doi.org/10.1371/journal.pone.0004013