DOI QR코드

DOI QR Code

Biotechnological improvement of lignocellulosic feedstock for enhanced biofuel productivity and processing

  • Ko, Jae-Heung (Department of Plant and Environmental New Resources, Kyung Hee University) ;
  • Kim, Hyun-Tae (Department of Horticulture, Michigan State University) ;
  • Han, Kyung-Hwan (Department of Horticulture, Michigan State University)
  • 투고 : 2010.11.10
  • 심사 : 2010.12.01
  • 발행 : 2011.01.31

초록

Secondary walls have recently drawn research interest as a primary source of sugars for liquid biofuel production. Secondary walls are composed of a complex mixture of the structural polymers cellulose, hemicellulose, and lignin. A matrix of hemicellulose and lignin surrounds the cellulose component of the plant's cell wall in order to protect the cell from enzymatic attacks. Such resistance, along with the variability seen in the proportions of the major components of the mixture, presents process design and operating challenges to the bioconversion of lignocellulosic biomass to fuel. Expanding bioenergy production to the commercial scale will require a significant improvement in the growth of feedstock as well as in its quality. Plant biotechnology offers an efficient means to create "targeted" changes in the chemical and physical properties of the resulting biomass through pathway-specific manipulation of metabolisms. The successful use of the genetic engineering approach largely depends on the development of two enabling tools: (1) the discovery of regulatory genes involved in key pathways that determine the quantity and quality of the biomass, and (2) utility promoters that can drive the expression of the introduced genes in a highly controlled manner spatially and/or temporally. In this review, we summarize the current understanding of the transcriptional regulatory network that controls secondary wall biosynthesis and discuss experimental approaches to developing-xylem-specific utility promoters.

키워드

참고문헌

  1. Bhandari S, Fujino T, Thammanagowda S, Zhang D, Xu F, Joshi CP (2006) Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees. Planta 224:828-837 https://doi.org/10.1007/s00425-006-0269-1
  2. Bhargava A, Mansfield SD, Hall HC, Douglas CJ, Ellis BE (2010) MYB75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem. Plant Physiol 154:1428-1438 https://doi.org/10.1104/pp.110.162735
  3. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519-546 https://doi.org/10.1146/annurev.arplant.54.031902.134938
  4. Brown DM, Zhang Z, Stephens E, Dupree P, Turner SR (2009) Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant J 57:732-746 https://doi.org/10.1111/j.1365-313X.2008.03729.x
  5. Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165-182 https://doi.org/10.1146/annurev.arplant.043008.092125
  6. Coleman HD, Ellis DD, Gilbert M, Mansfield SD (2006) Upregulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism. Plant Biotechnol J 4:87-101 https://doi.org/10.1111/j.1467-7652.2005.00160.x
  7. Coleman HD, Yan J, Mansfield SD (2009) Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA 106:13118-13123 https://doi.org/10.1073/pnas.0900188106
  8. Demura T, Ye ZH (2010) Regulation of plant biomass production. Curr Opin Plant Biol 13:299-304
  9. Dhugga KS, Barreiro R, Whitten B, Stecca K, Hazebroek J, Randhawa GS, Dolan M, Kinney AJ, Tomes D, Nichols S, Anderson P (2004) Guar seed beta-mannan synthase is a member of the cellulose synthase super gene family. Science 303:363-366 https://doi.org/10.1126/science.1090908
  10. Gardiner JC, Taylor NG, Turner SR (2003) Control of cellulose synthase complex localization in developing xylem. Plant Cell 15:1740-1748 https://doi.org/10.1105/tpc.012815
  11. Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima- Pettenati J (2005) EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J 43:553-567 https://doi.org/10.1111/j.1365-313X.2005.02480.x
  12. Gray KA, Zhao LS, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141-146 https://doi.org/10.1016/j.cbpa.2006.02.035
  13. Han KH, Ko JH, Yang SH (2007) Optimizing lignocellulosic feedstock for improved biofuel productivity and processing. Biofuels Bioprod Bioref 1:135-146 https://doi.org/10.1002/bbb.14
  14. Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808-812 https://doi.org/10.1038/11758
  15. Ko JH, Yang SH, Park AH, Lerouxel O, Han KH (2007) ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. Plant J 50:1035-1048 https://doi.org/10.1111/j.1365-313X.2007.03109.x
  16. Ko JH, Kim WC, Han KH (2009) Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. Plant J 60:649-665 https://doi.org/10.1111/j.1365-313X.2009.03989.x
  17. Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855-1860 https://doi.org/10.1101/gad.1331305
  18. Lee C, Teng Q, Huang W, Zhong R, Ye ZH (2009) Downregulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiol 50:812-827 https://doi.org/10.1093/pcp/pcp025
  19. Lerouxel O, Cavalier DM, Liepman AH, Keegstra K (2006) Biosynthesis of plant cell wall polysaccharides--a complex process. Curr Opin Plant Biol 9:621-630 https://doi.org/10.1016/j.pbi.2006.09.009
  20. Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci USA 100:4939-4944 https://doi.org/10.1073/pnas.0831166100
  21. Liepman AH, Wilkerson CG, Keegstra K (2005) Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci 102:2221-2226 https://doi.org/10.1073/pnas.0409179102
  22. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627-642 https://doi.org/10.1007/s00253-005-0229-x
  23. Mansfield SD (2009) Solutions for dissolution—engineering cell walls for deconstruction. Curr Opin Biotechnol 20:286-294 https://doi.org/10.1016/j.copbio.2009.05.001
  24. Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17:2993-3006 https://doi.org/10.1105/tpc.105.036004
  25. Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270-280 https://doi.org/10.1105/tpc.106.047043
  26. Osakabe Y, Osakabe K, Chiang VL (2009) Isolation of 4-coumarate Co-A ligase gene promoter from loblolly pine (Pinus taeda) and characterization of tissue-specific activity in transgenic tobacco. Plant Physiol Biochem 47:1031-1036 https://doi.org/10.1016/j.plaphy.2009.09.003
  27. Patzlaff A, McInnis S, Courtenay A, Surman C, Newman LJ, Smith C, Bevan MW, Mansfield S, Whetten RW, Sederoff RR, Campbell MM (2003a) Characterisation of a pine MYB that regulates lignification. Plant J 36:743-754 https://doi.org/10.1046/j.1365-313X.2003.01916.x
  28. Patzlaff A, Newman LJ, Dubos C, Whetten RW, Smith C, McInnis S, Bevan MW, Sederoff RR, Campbell MM (2003b) Characterisation of Pt MYB1, an R2R3-MYB from pine xylem. Plant Mol Biol 53:597-608 https://doi.org/10.1023/B:PLAN.0000019066.07933.d6
  29. Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559-568 https://doi.org/10.1111/j.1365-313X.2008.03463.x
  30. Pauly M, Keegstra K (2010) Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol 13:305-312
  31. Rahantamalala A, Rech P, Martinez Y, Chaubet-Gigot N, Grima-Pettenati J, Pacquit V (2010)Coordinated transcriptional regulation of two key genes in the lignin branch pathway--CAD and CCR--is mediated through MYB-binding sites. BMC Plant Biol 10:130-142 https://doi.org/10.1186/1471-2229-10-130
  32. Saxena IM, Brown RM Jr (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9-21 https://doi.org/10.1093/aob/mci155
  33. Shi R, Sun YH, Li Q, Heber S, Sederoff R, Chiang VL (2010) Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol 51:144-163 https://doi.org/10.1093/pcp/pcp175
  34. Simmons BA, Loque D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 13:313-320
  35. Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53-78 https://doi.org/10.1146/annurev.cellbio.22.022206.160206
  36. Somerville C (2007) Biofuels. Curr Biol 17:R115-R119 https://doi.org/10.1016/j.cub.2007.01.010
  37. Sousa LD, Chundawat SPS, Balan V, Dale BE (2009) ''Cradle-tograve'' assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339-347 https://doi.org/10.1016/j.copbio.2009.05.003
  38. Steiner-Lange S, Unte US, Eckstein L, Yang C, Wilson ZA, Schmelzer E, Dekker K, Saedler H (2003) Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers. Plant J 34:519-528 https://doi.org/10.1046/j.1365-313X.2003.01745.x
  39. Suzuki S, Li L, Sun YH, Chiang VL (2006) The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiol 142:1233-1245 https://doi.org/10.1104/pp.106.086678
  40. Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H (2003) Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol 133:73-83 https://doi.org/10.1104/pp.103.022442
  41. Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci 100:1450-1455 https://doi.org/10.1073/pnas.0337628100
  42. Van Vleet JH, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20:300-306 https://doi.org/10.1016/j.copbio.2009.06.001
  43. Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11:278-285 https://doi.org/10.1016/j.pbi.2008.03.005
  44. Winzell A, Aspeborg H, Wang Y, Ezcurra I (2010) Conserved CA-rich motifs in gene promoters of Pt ${\times}$ tMYB021-responsive secondary cell wall carbohydrate-active enzymes in Populus. Biochem Biophys Res Commun 394:848-853 https://doi.org/10.1016/j.bbrc.2010.03.101
  45. Wu AM, Rihouey C, Seveno M, Hornblad E, Singh SK, Matsunaga T, Ishii T, Lerouge P, Marchant A (2009) The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation. Plant J 57:718-731 https://doi.org/10.1111/j.1365-313X.2008.03724.x
  46. Yang XY, Li JG, Pei M, Gu H, Chen ZL, Qu LJ (2007) Overexpression of a flower-specific transcription factor gene At- MYB24 causes aberrant anther development. Plant Cell Rep 26:219-228 https://doi.org/10.1007/s00299-006-0229-z
  47. York WS, O'Neill MA (2008) Biochemical control of xylan biosynthesis--which end is up? Curr Opin Plant Biol 11:258-265 https://doi.org/10.1016/j.pbi.2008.02.007
  48. Zhong R, Ye ZH (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 10:564-572 https://doi.org/10.1016/j.pbi.2007.09.001
  49. Zhong R, Pena MJ, Zhou GK, Nairn CJ, Wood-Jones A, Richardson EA, Morrison WH 3rd, Darvill AG, York WS, Ye ZH (2005) Arabidopsis fragile fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell 17:3390-3408 https://doi.org/10.1105/tpc.105.035501
  50. Zhong R, Demura T, Ye ZH (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18:3158-3170 https://doi.org/10.1105/tpc.106.047399
  51. Zhong R, Richardson EA, Ye ZH (2007) The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell 19:2776-2792 https://doi.org/10.1105/tpc.107.053678
  52. Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763-2782 https://doi.org/10.1105/tpc.108.061325
  53. Zhong R, Lee C, Ye ZH (2010) Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trend Plant Sci 15:625-632 https://doi.org/10.1016/j.tplants.2010.08.007
  54. Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248-266 https://doi.org/10.1105/tpc.108.063321

피인용 문헌

  1. Advances in the genetic dissection of plant cell walls: tools and resources available in Miscanthus vol.4, pp.None, 2011, https://doi.org/10.3389/fpls.2013.00217
  2. The MYB46/MYB83-mediated transcriptional regulatory programme is a gatekeeper of secondary wall biosynthesis vol.114, pp.6, 2011, https://doi.org/10.1093/aob/mcu126
  3. Identification of direct targets of transcription factor MYB46 provides insights into the transcriptional regulation of secondary wall biosynthesis vol.85, pp.6, 2011, https://doi.org/10.1007/s11103-014-0205-x
  4. The Reproduction and Ecology ofHypericum edisonianum: An Endangered Florida Endemic vol.79, pp.3, 2014, https://doi.org/10.2179/14-016
  5. AtC3H14, a plant‐specific tandem CCCH zinc‐finger protein, binds to its target mRNAs in a sequence‐specific manner and affects cell elongation in Arabidopsis thaliana vol.80, pp.5, 2011, https://doi.org/10.1111/tpj.12667
  6. Hyperattenins A-I, bioactive polyprenylated acylphloroglucinols from Hypericum attenuatum Choisy vol.5, pp.7, 2011, https://doi.org/10.1039/c4ra11675e
  7. Genotype and soil substrate effects on the wood quality of poplar grown in a reclaimed lignite-mining area vol.285, pp.None, 2011, https://doi.org/10.1016/j.jenvman.2021.112146