DOI QR코드

DOI QR Code

A combined pathway of somatic embryogenesis and organogenesis to regenerate radiata pine plants

  • Montalban, I.A. (Neiker Tecnalia, Centro de Arkaute) ;
  • De Diego, N. (Neiker Tecnalia, Centro de Arkaute) ;
  • Igartua, E. Aguirre (Neiker Tecnalia, Centro de Arkaute) ;
  • Setien, A. (Neiker Tecnalia, Centro de Arkaute) ;
  • Moncalean, P. (Neiker Tecnalia, Centro de Arkaute)
  • Received : 2010.09.17
  • Accepted : 2011.02.25
  • Published : 2011.04.30

Abstract

This study describes for the first time in Pinus genus a plant regeneration system via a combined pathway of somatic embryogenesis and organogenesis from immature seeds of radiata pine. Somatic embryos were obtained from embryogenic line 2162 of Pinus radiata D. Don on EDM basal medium containing $60{\mu}M$ ABA and 6% sucrose. The explants used for organogenesis experiments were either freshly collected somatic embryos or somatic embryos germinated for 1 week. Germination medium was half-strength LP medium, supplemented with 0.2% activated charcoal. Different induction periods and BA concentrations were assayed for shoot induction. After induction treatments, explants were elongated on the same medium used for germination stage. Rooting medium was quarter-strength LP medium supplemented with three different auxin treatments: $1.5mg\;L^{-1}$ 1-naphthalene acetic acid (NAA), $1.5mg\;L^{-1}$ indole-3-butyric acid (IBA) and $1mg\;L^{-1}$ IBA with $0.5mg\;L^{-1}$ NAA (MIX). The effect of the photon flux ($120mmol\;m^{-2}\;s^{-1}$ and darkness) in the first week of the explants in the rooting media was also tested. This methodology could offer an alternative to overcome some problems associated with somatic embryogenesis such as the seasonality of embryogenic tissue (ET) initiation or a low embryo production from the ET, a particularly important issue in the case of genetically transformed ETs.

Keywords

References

  1. Aitken-Christie J, Singh AP, Horgan KJ, Thorpe TA (1985) Explant developmental state and shoot formation in Pinus radiata cotyledons. Bot Gaz 146:196-203. https://doi.org/10.1086/337515
  2. Aitken-Christie J, Singh AP, Davies H (1988) Multiplication of meristematic tissue: a new tissue culture system for radiata pine. In: Hanover JW, Keathley DE (eds) Genetic manipulation of woody plants. Plenum, New York, pp 413-432.
  3. Alonso P, Moncalean P, Fernandez B, Rodriguez A, Centeno ML, Ordas RJ (2006) An improved micropropagation protocol for stone pine (Pinus pinea L.). Ann For Sci 63:1-7.
  4. Alvarez JM, Majada J, Ordas RJ (2009) An improved micropropagation protocol for maritime pine (Pinus pinaster Ait.) isolated cotyledons. Forestry 82:175-184. https://doi.org/10.1093/forestry/cpn052
  5. Bergmann BA, Stomp AM (1992) Influence of taxonomic relatedness and medium composition on meristematic nodule and adventitious shoot formation in nine species. Can J For Res 22:750-755. https://doi.org/10.1139/x92-101
  6. Biondi S, Thorpe TA (1982) Growth regulator effects, metabolite changes, and respiration during shoot initiation in cultured cotyledon explants of Pinus radiata. Bot Gaz 143:20-25. https://doi.org/10.1086/337266
  7. Brassard N, Brissette L, Lord D, Laliberte S (1996) Elongation, rooting and acclimatization of micropropagated shoots from mature material of hybrid larch. Plant Cell Tissue Organ Cult 44:37-44. https://doi.org/10.1007/BF00045911
  8. Brown MB, Forsythe AB (1974) Robust test for the equality of variance. J Am Stat Assoc 69:364-367. https://doi.org/10.1080/01621459.1974.10482955
  9. Capuana M, Giannini R (1995) In vitro plantlet regeneration from embryonic explants of Pinus pinea L. In Vitro Cell Dev Biol Plant 31:202-206. https://doi.org/10.1007/BF02632022
  10. Carneros E, Celestino C, Klimaszewska K, Toribio M, Bonga JM (2009) Plant regeneration in Stone pine (Pinus pinea L.) by somatic embryogenesis. Plant Cell Tissue Organ Cult 98:165-178. https://doi.org/10.1007/s11240-009-9549-3
  11. Choudhury H, Kumaria S, Tandon P (2007) Induction and maturation of somatic embryos from intact megagametophyte explants in Khasi pine (Pinus kesiya Royle ex. Gord.). Curr Sci 95:1433-1438.
  12. Cortizo M, de Diego N, Moncalean P, Ordas RJ (2009) Micropropagation of adult Stone pine (Pinus pinea L.). Trees Struct Funct 23:835-842. https://doi.org/10.1007/s00468-009-0325-0
  13. Davis JM, Becwar MR (2007) Developments in tree cloning. Developments in fibres and fibre treatment series, PIRA, UK.
  14. De Diego N, Montalban IA, Fernandez de Larrinoa E, Moncalean P (2008) In vitro regeneration of Pinus pinaster adult trees. Can J For Res 38:2607-2615. https://doi.org/10.1139/X08-102
  15. De Diego N, Montalban IA, Moncalean P (2010) In vitro regeneration of adult Pinus sylvestris trees. S Afr J For Res 76:158-162.
  16. De Diego N, Montalban IA, Moncalean P (2011) Improved micropropagation protocol for maritime pine using zygotic embryos. Scand J For Res (in press).
  17. Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201-228. https://doi.org/10.1023/A:1024033216561
  18. Flygh G, Gronroos R, von Arnold S (1993) Induction, rooting, and growth capacity of adventitious shoots of Pinus contorta. Can J For Res 23:1907-1916. https://doi.org/10.1139/x93-241
  19. Garin E, Isabel N, Plourde A (1998) Screening of large numbers of seed families of Pinus strobus L. for somatic embryogenesis from immature zygotic embryos. Plant Cell Rep 18:37-43. https://doi.org/10.1007/s002990050528
  20. Giri CC, Shyamkumar B, Anjaneyulu C (2004) Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees 18:115-135. https://doi.org/10.1007/s00468-003-0287-6
  21. Guohua M (1998) Effects of cytokinins and auxins on cassava shoot organogenesis and somatic embryogenesis from somatic embryo explants. Plant Cell Tissue Organ Cult 54:1-7. https://doi.org/10.1023/A:1006065120629
  22. Gupta PK, Durzan DJ (1986) Somatic polyembryogenesis from callus of mature sugar pine embryos. Bio/Technol 4:643-645. https://doi.org/10.1038/nbt0786-643
  23. Hargreaves CL, Grace LJ, van der Maas SA, Menzies MI, Kumar S, Holden DG, Foggo MN, Low CB, Dibley MJ (2005) Comparative in vitro and early nursery performance of adventitious shoots from cryopreserved cotyledons and axillary shoots from epicotyls of the same zygotic embryo of control-pollinated Pinus radiata. Can J For Res 35:2629-26. https://doi.org/10.1139/x05-178
  24. Jimenez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91-110. https://doi.org/10.1007/s10725-005-3478-x
  25. Khan T, Singh A, Pant RC (2006) Regeneration via somatic embryogenesis and organogenesis in different cultivars of cotton (Gossypium spp.). In Vitro Cell Dev Biol Plant 42:498-501. https://doi.org/10.1079/IVP2006802
  26. Kim SW, Oh MJ, Liu JR (2009) Plant regeneration from the rootderived embryonic tissues of Rosa hybrida L. cv. Charming via a combined pathway of somatic embryogenesis and organogenesis. Plant Biotechnol Rep 3:341-345. https://doi.org/10.1007/s11816-009-0108-5
  27. Klimaszewska K, Park YS, Cyr DR, Overton C, Maceacheron I, Bonga JM (2001) Optimized somatic embryogenesis in Pinus strobus L. In Vitro Cell Dev Biol Plant 37:392-399 https://doi.org/10.1007/s11627-001-0069-z
  28. Klimaszewska K, Trontin JF, Becwar MR, Devillard C, Park YS, Lelu-Walter MA (2007) Recent progress in somatic embryogenesis of four Pinus spp. Tree For Sci Biotechnol 1:11-25.
  29. Lambardi M, Sharma KK, Thorpe TA (1993) Optimization of in vitro bud induction and plantlet formation from mature embryos of aleppo pine (Pinus halepensis Mill.). In Vitro Cell Dev Biol 29:189-199. https://doi.org/10.1007/BF02634180
  30. Lelu-Walter MA, Bernier-Cardou M, Klimaszewska K (2008) Clonal plant production from self- and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. Plant Cell Tissue Organ Cult 92:31-45.
  31. MacKay JJ, Beckwar MR, Park YS, Corderro JP, Pullman GS (2006) Genetic control of somatic embryogenesis initiation in loblolly pine and implications for breeding. Tree Genet Genomes 2:1-9. https://doi.org/10.1007/s11295-005-0020-2
  32. Martinez Pulido C, Harry IS, Thorpe TA (1990) In vitro regeneration of plantlets of Canary Island pine (Pinus canariensis). Can J For Res 20:1200-1211. https://doi.org/10.1139/x90-159
  33. Martınez Pulido C, Harry IS, Thorpe TA (1992) Optimization of bud induction in cotyledonary explants of Pinus canariensis. Plant Cell Tissue Organ Cult 29:247-255. https://doi.org/10.1007/BF00034360
  34. Martınez Pulido C, Harry IS, Thorpe TA (1994) Effect of various induction treatments on elongation and rooting of adventitious shoots of Canary Island pine (Pinus canariensis). Plant Cell Tissue Organ Cult 39:225-230. https://doi.org/10.1007/BF00035974
  35. Mathur G, Nadgauda R (1999) In vitro plantlet regeneration from mature somatic embryos of Pinus wallichiana A.B. Jacks. Plant Cell Rep 19:74-80. https://doi.org/10.1007/s002990050713
  36. Moncalean P, Alonso P, Centeno ML, Cortizo M, Rodrıguez A, Fernandez B, Ordas RJ (2005) Organogenic responses of Pinus pinea cotyledons to hormonal treatments: BA metabolism and cytokinin content. Tree Physiol 25:1-9. https://doi.org/10.1093/treephys/25.1.1
  37. Montalban IA (2011) Desarrollo y optimizacion de herramientas biotecnologicas para la obtencion de material clonal de Pinus radiata D. Don. PhD thesis, University of the Basque Country, Spain, pp 27-57.
  38. Montalban IA, De Diego N, Moncalean P (2010) Bottlenecks in Pinus radiata somatic embryogenesis: improving maturation and germination. Trees Struct Funct 24:1061-1071. https://doi.org/10.1007/s00468-010-0477-y
  39. Park YS (2002) Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Ann For Sci 59:651-656. https://doi.org/10.1051/forest:2002051
  40. Park YS, Barrett JD, Bonga JM (1998) Application of somatic embryogenesis in high-value clonal forestry: deployment, genetic control, and stability of cryopreserved clones. In Vitro Cell Dev Biol Plant 34:231-239. https://doi.org/10.1007/BF02822713
  41. Prehn D, Serrano C, Mercado A, Stange C, Barrales L, Arce-Johnson P (2003) Regeneration of whole from apical meristems of Pinus radiata. Plant Cell Tissue Organ Cult 73:91-94. https://doi.org/10.1023/A:1022615212607
  42. Quoirin M, Lepoivre P (1977) Etudes des milieux adaptes aux cultures in vitro de Prunus. Acta Hortic 78:437-442.
  43. Saborio F, Dvorak WS, Donahue JK, Thorpe T (1997) In vitro regeneration of plantlets from mature embryos of Pinus ayacahuite. Tree Physiol 17:787-796. https://doi.org/10.1093/treephys/17.12.787
  44. Shapiro SS, Wilk MB (1965) Variance test for normality. Biometrika 52:591-611.
  45. Siva R, Rajasekaran C, Mudgal G (2009) Induction of somatic embryogenesis and organogenesis in Oldenlandia umbellata L., a dye-yielding medicinal plant. Plant Cell Tissue Organ Cult 98:205-211. https://doi.org/10.1007/s11240-009-9553-7
  46. Sriskandarajah S, Lundquist PO (2009) High frequency shoot organogenesis and somatic embryogenesis in juvenile and adult tissues of seabuckthorn (Hippophae rhamnoides L.). Plant Cell Tissue Organ Cult 99:259-268. https://doi.org/10.1007/s11240-009-9597-8
  47. Stange C, Prehn D, Gebauer M, Arce-Johnson P (1999) Optimization of in vitro culture conditions for Pinus radiata embryos and histological characterization of regenerated shoots. Biol Res 32:19-28.
  48. Stasolla C, Thorpe TA (2010) Tissue culture: historical perspectives and applications. In: Kumar A, Sopory SK (eds) Applications of plant biotechnology: in vitro propagation, plant transformations and secondary metabolite production. IK International, India, pp 1-39
  49. Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15-35. https://doi.org/10.1023/A:1023345803336
  50. Steward FC, Mapes MO, Smith J (1958) Growth and organized development of cultured cells. I. Growth and division of freely suspended cells. Am J Bot 45:693-703. https://doi.org/10.2307/2439507
  51. Stojicic D, Budimir S, C ulafic L (1999) Micropropagation of Pinus heldreichii. Plant Cell Tissue Organ Cult 59:147-150. https://doi.org/10.1023/A:1006373218772
  52. Talbert CB, Ritchie GA, Gupta P (1993) Conifer vegetative propagation. In: Ahuja MR, Libby WJ (eds) Clonal forestry I. Genetics and biochemistry. Springer, Berlin, pp 145-181.
  53. Tang W, Guo Z (2001) In vitro propagation of loblolly pine via direct somatic organogenesis from mature cotyledons and hypocotyls. Plant Growth Regul 33:25-31. https://doi.org/10.1023/A:1010764816523
  54. Tang W, Guo Z, Ouyang F (2001) Plant regeneration from embryogenic cultures initiated from mature loblolly pine zygotic embryos. In Vitro Cell Dev Biol Plant 37:558-563. https://doi.org/10.1007/s11627-001-0097-8
  55. Valdes AE, Centeno ML, Ordas RJ, Fernandez B (2001) Relationships between hormonal contents and organogenic response in Pinus pinea L. cotyledons taken from plantlets at different germination periods. Plant Physiol Biochem 39:377-384. https://doi.org/10.1016/S0981-9428(01)01253-0
  56. Villalobos-Amador E, Rodriguez-Hernandez G, Perez-Molphe-Balch E (2002) Organogenesis and Agrobacterium rhizogenes-induced rooting in Pinus maximartinezii Rzedowsky and P. pinceana Gordon. Plant Cell Rep 20:779-785. https://doi.org/10.1007/s00299-001-0396-x
  57. von Aderkas P, Label P, Lelu MA (2002) Charcoal affects early development and hormonal concentrations of somatic embryos of hybrid larch. Tree Physiol 22:431-434. https://doi.org/10.1093/treephys/22.6.431
  58. Walter C (2004) Genetic engineering in conifer forestry: technical and social considerations. In Vitro Cell Dev Biol Plant 40:434-441. https://doi.org/10.1079/IVP2004542
  59. Walter C, Find JI, Grace LJ (1998) Somatic embryogenesis and genetic transformation in Pinus radiata. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 4. Kluwer, The Netherlands, pp 491-504.
  60. Webb DT, Flinn BS, Georgis W (1988) Micropropagation of eastern white pine (Pinus strobus L.). Can J For Res 18:1570-1580. https://doi.org/10.1139/x88-240
  61. Yeung EC, Aitken J, Biondi S, Thorpe TA (1981) Shoot histogenesis in cotyledon explants of radiata pine. Bot Gaz 142:494-501. https://doi.org/10.1086/337251
  62. Yildirim T, Kaya Z, Isik K (2006) Induction of embryogenic tissue and maturation of somatic embryos in Pinus brutia TEN. Plant Cell Tissue Organ Cult 87:67-76. https://doi.org/10.1007/s11240-006-9137-8
  63. Zdravkovic-Korac S, C alic-Dragosavac D, Uzelac B, Janosevic, Budimir S, Vinterhalter B, Vinterhalter D (2008) Secondary somatic embryogenesis versus caulogenesis from somatic embryos of Aesculus carnea Hayne.: developmental stage impact. Plant Cell Tissue Organ Cult 94:225-231. https://doi.org/10.1007/s11240-008-9399-4
  64. Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411-1423.

Cited by

  1. 소나무의 체세포배 유도 및 발아에 미치는 ABA, 삼투압제 및 배발생조직 라인 효과 vol.39, pp.2, 2011, https://doi.org/10.5010/jpb.2012.39.2.093
  2. Improving plantlet yield inPinus pinastersomatic embryogenesis vol.28, pp.7, 2013, https://doi.org/10.1080/02827581.2013.821516
  3. Somatic embryogenesis in Pinus halepensis Mill.: an important ecological species from the Mediterranean forest vol.27, pp.5, 2013, https://doi.org/10.1007/s00468-013-0882-0
  4. Environmental conditions at the initial stages of Pinus radiata somatic embryogenesis affect the production of somatic embryos vol.30, pp.3, 2016, https://doi.org/10.1007/s00468-015-1336-7
  5. Induction of somatic embryogenesis in woody plants vol.38, pp.5, 2016, https://doi.org/10.1007/s11738-016-2134-6
  6. Different environmental conditions at initiation of radiata pine somatic embryogenesis determine the protein profile of somatic embryos vol.33, pp.3, 2016, https://doi.org/10.5511/plantbiotechnology.16.0520a
  7. Bottlenecks in bog pine multiplication by somatic embryogenesis and their visualization with the environmental scanning electron microscope vol.254, pp.4, 2017, https://doi.org/10.1007/s00709-016-1036-1
  8. Effect of ABA, the auxin antagonist PCIB and partial desiccation on stone pine somatic embryo maturation vol.131, pp.3, 2011, https://doi.org/10.1007/s11240-017-1296-2
  9. Microcomputer tomography (microCT) as a tool in Pinus tree breeding: pilot studies vol.47, pp.1, 2011, https://doi.org/10.1186/s40490-016-0084-9
  10. In vitro propagation of conifers using mature shoots vol.29, pp.3, 2011, https://doi.org/10.1007/s11676-018-0608-7
  11. Automation and Scale Up of Somatic Embryogenesis for Commercial Plant Production, With Emphasis on Conifers vol.10, pp.None, 2019, https://doi.org/10.3389/fpls.2019.00109
  12. In Vitro Plant Regeneration in Conifers: The Role of WOX and KNOX Gene Families vol.12, pp.3, 2021, https://doi.org/10.3390/genes12030438
  13. Direct in vitro organogenesis from sprouted seeds of a highly economical and ecological valued tree, Korean pine vol.148, pp.1, 2022, https://doi.org/10.1007/s11240-021-02164-6