자기 온열 시스템의 열 발생 효율에 관한 실험적 연구

The Experimental Study of Heat Generation Efficiency of Magnetic Hyperthermia System

  • 송영진 (부경대학교 메카트로닉스공학과) ;
  • 오정환 (부경대학교 의공학과)
  • 투고 : 2011.05.11
  • 심사 : 2011.05.29
  • 발행 : 2011.06.30

초록

We demonstrated heat generation efficiency of the magnetic hyperthermia system to find optimal condition using gelatin tissue phantom. Magnetic hyperthermia induction can be used to make heat generation with different concentration of $Fe_3O_4$ iron oxide inside tissue phantom and magnetically labeled cells by applying AC magntic field at a frequency of 145 kHz. It was observed that the maximum temperature achieved in the magnetic gelatin tissue phantom increased with the concentration of $Fe_3O_4$ iron oxide and alternating magnetic field intensity. Results were discussed with respect to further optimization of therapeutic technique for biomedical application with modified functional nanoparticles.

키워드

참고문헌

  1. M. Shinkai, "Functional Magnetic Particles for Medical Application", Journal of Bioscience and Bioengineering, Vol. 94, No. 6, 2002, pp. 606-613 https://doi.org/10.1016/S1389-1723(02)80202-X
  2. James A. Ritter, Armin D. Ebner, Karen D. Daniel and Krystle L. Stewart, "Application of high gradient magnetic separation principles to magnetic drug targeting", Journal of Magnetism and Magnetic Materials, Vol. 280, 2004, pp. 184-201 https://doi.org/10.1016/j.jmmm.2004.03.012
  3. N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J. S Guthi, S. F. Chin, A. D. Sherry, D. A. Boothman and J. Gao, "Multifunctional Polymeric Micelles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery System", Nano Lett, Vol. 6, No. 11, 2006, pp. 2427-2430 https://doi.org/10.1021/nl061412u
  4. J. P. Fortin, C. Willhelm, J. Servais, C. Menager, J. C. Bacri and F. Gazeau, "Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia", Journal of the american chemical society, Vol. 129, No. 9, 2007, pp. 2628-2635 https://doi.org/10.1021/ja067457e
  5. I. Safarik and M. Safarikova, "Use of magnetic techniques for the isolation of cells", Journal of Chromatography B: Biomedical Sciences and Applications, Vol. 722, 1999, pp. 33-53 https://doi.org/10.1016/S0378-4347(98)00338-7
  6. D. R. Baselt, G. U. Lee, K. M. Hansen, L. A. Chrisey and R. L. Colton, "A high-sensitivity micromachined biosensor", IEEE, Vol. 85, 1997, pp. 672- 680 https://doi.org/10.1109/5.573755
  7. Y. R. Chemla, H. L. Grossman, Y. Poon, R. Mc- Dermott, R. Stevens, M. D. Alper and J. Clarke, "Ultrasensitive magnetic biosensor for homogeneous immunoassay", Proceedings of the National Academy of Sciences of the United States of America, Vol. 97, No. 26, pp. 14268-14272
  8. I. Hilger, W. Andrä, R. Hergt, R. Hiergeist, H. Schubert and W. A. Kaiser, "Electromagnetic Heating of Breast Tumors in Interventional Radiology: In Vitro and in Vivo Studies in Human Cadavers and Mice", Radiology, Vol. 218, 2001, pp. 570-575 https://doi.org/10.1148/radiology.218.2.r01fe19570
  9. M. Johannsen, B. Thiesen, A. Jordan, K. Taymoorian, U. Gneveckow, N. Waldofner, R. Scholz, M. Koch, M. Lein, K. Jung and S. A. Loening, "Magnetic fluid hyperthermia(MFH) reduces prostate cancer growth in the orthotopic Dunning R3327 rat model", Vol. 64, 2005, pp. 283-292
  10. B. Emami, R. J. Myerson, C. Scott, F. Gibbs, C. Lee, and C. A. Perez. "Phase I/II study, combination of radiotherapy and hyperthermia in patients with deep-seated malignant tumors: Report of a pilot study by the Radiation Therapy Oncology Group", International Journal of Radiation Oncology, Vol. 20, 1991, pp. 73-79 https://doi.org/10.1016/0360-3016(91)90140-Y
  11. K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix and A. Jordan, "Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme", Journal of Neuro-oncology, Vol. 81, 2007, pp. 53-60 https://doi.org/10.1007/s11060-006-9195-0
  12. R. T. Gordon, J. R. Hines and D. Gordon, "Intracellular hyperthermia a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations", Medical Hypotheses, Vol. 5, 1979, pp. 83-102 https://doi.org/10.1016/0306-9877(79)90063-X
  13. Dong-Hyun Kim, David E. Nikles, Duane T. Johnson, Christopher S. Brazel,"Heat generation of aqueously dispersed $CoFe_2O_4$ nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia", Joural of Magnetism and Magnetic Materials, Vol. 320, No. 19, 2008, pp. 2390- 2396 https://doi.org/10.1016/j.jmmm.2008.05.023
  14. K. L. Ang, S. Venkatraman, R. V. Ramanujan,"Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy",Materials Science & Engineering C, Vol. 27 No. 3, 2007, pp. 347-351 https://doi.org/10.1016/j.msec.2006.05.027
  15. N. K. Prasad, K. Rathinasamy, D. Panda and D. Bahadur,"Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of [gamma]-MnxFe2-xO3synthesized by a single step process",Journal of Materials Chemistry, Vol.17, No.48, 2007, pp. 5013-5112 https://doi.org/10.1039/b717975h
  16. R. E. Rosensweig, "Heating magnetic fluid with alternating magnetic field", Journal of magnetism and magnetic materials, Vol. 252, 2002, pp. 370- 374 https://doi.org/10.1016/S0304-8853(02)00706-0