DOI QR코드

DOI QR Code

해수와 청수환경에서 선박용 원심펌프 임펠러 재료의 캐비테이션 특성

Cavitation Characteristics on Impeller Materials of Centrifugal Pump for Ship in Sea Water and Fresh Water

  • 투고 : 2011.12.09
  • 심사 : 2011.12.27
  • 발행 : 2011.12.01

초록

The fresh water and sea water in present ships is used as cooling water for marine engine. Therefore, corrosion damage in seawater system is frequently occurred. In particular, in the impeller of pump, the performance and material span due to the corrosion and cavitation erosion has adverse effects. Most of the pump impellers in vessels are used Cu-Al alloy. Cu-Al alloy which having the excellent mechanical properties and corrosion resistance is widely used in marine environments. However, despite the excellent characteristics, the periodic replacement parts due to the cavitation damage in seawater is vulnerable to economic viewpoint. In this study, Cu-Al alloy used with impeller for centrifugal pump were conducted various experiments to evaluate its characteristics in seawater and fresh water solutions. As an electrochemical result, the dynamic conditions that exposed to the cavitation environment presented high corrosion current density with collapse of the cavity compared with the static conditions. Cavitation test results, the weightloss and weightloss rate in fresh water are observed more than those of seawater.

키워드

참고문헌

  1. T. Okada, Y. Iwai, and K. Awazu, Wear, 133, 219 (1989). https://doi.org/10.1016/0043-1648(89)90037-9
  2. Y. Iwai, T. Okada, and S. Tanaka, Wear, 133, 233 (1989). https://doi.org/10.1016/0043-1648(89)90038-0
  3. Iwai, T. Okada, and H. Mori, Wear, 150, 367 (1991). https://doi.org/10.1016/0043-1648(91)90330-W
  4. T. Okada, Y. Iwai, S. Hattori, and N. Tanimura, Wear, 184, 231 (1995). https://doi.org/10.1016/0043-1648(94)06581-0
  5. S. Hattori, H. Mori, and T. Okada, Trans. ASME J. Fluids. Eng., 120, 179 (1998). https://doi.org/10.1115/1.2819644
  6. http://www.kmst.go.kr/statistics/ statisticslast_list.asp
  7. H. M. Shalaby, A. Al-Hashem, H. Al-Mazeedi, and A. Abdullah, Brit. Corr. J., 30, 63 (1995). https://doi.org/10.1179/000705995798114221
  8. A. Al-Hashem and W. Riad, Mater. Charact., 48, 37 (2002). https://doi.org/10.1016/S1044-5803(02)00196-1
  9. C. H. Tang, F. T. Cheng, and H. C. Man, Surf. Coat. Tech., 182, 300 (2004). https://doi.org/10.1016/j.surfcoat.2003.08.048
  10. J. L. Heuze and A. Karimi, Proceeding Cavitation 91 Symposium, 116, 113 (1991).
  11. Y. S. Park and S. G. Hong, J. Corr. Sci. Soc. Kor., 11, 7 (1982).
  12. S. M. Ahmed, K. Hokkirigawa, Y. Ito, and R. Oba, Wear, 142, 303 (1991). https://doi.org/10.1016/0043-1648(91)90171-P
  13. J. H. Hwang and U. J. Lim, J. Corr. Sci. Soc. Kor., 25, 317 (1996).
  14. A. Thiruvengadam and ASTM, STP 567, 219 (1982).
  15. H. G. Feller and Y. Kharrazi, Wear, 93, 249 (1984). https://doi.org/10.1016/0043-1648(84)90199-6
  16. S. S. Hwang, S. H. Park, W. J. Park, S. C. Huh, and K. Y. Lee, J. KSME spring conference, 11 (2006).
  17. Y. Yamauchi, H. Soyama, Y. Adachi, K. Sato, T. Shindo, R. Oba, R. Oshima, and M. Yanabe, J. JSME, 59, 19 (1993)
  18. H. Hirano, K. Enomoto, E. Hayashi, and K. Kurosawa, J. JSME, 45, 740 (1996)
  19. H. Soyama, Y. Yamauchi, T. Ikohagi, R. Oba, K. Sato, T. Shindo, and R. Oshima, J. Jet Flow Eng., 13, 25 (1996).
  20. K. D. Park, W. T. Ki, Y. J. Shin, and H. J. Ryu, Int. J. Automot. Tech., 8, 343 (2007).
  21. W. B. Lee, K. T. Cho, K. H. Kim, K. I. Moon, and Y. Lee, Mater. Sci. Eng.(A), 527, 5852 (2010). https://doi.org/10.1016/j.msea.2010.05.083