DOI QR코드

DOI QR Code

Study on the Effects of Environmental Parameters on High Temperature Denting Behavior in Crevices

덴팅거동에 미치는 고온틈새 환경변수들의 영향연구

  • Kim, Myong-Jin (Dpt. of Quantum Energy Chemical Engineering, University of Science & Technology) ;
  • Kim, Joung Soo (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Dong Jin (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Hong Pyo (Nuclear Materials Research Division, Korea Atomic Energy Research Institute)
  • 김명진 (과학기술연합대학원대학교 양자에너지화학공학과) ;
  • 김정수 (한국원자력연구원 원자력재료기술개발부) ;
  • 김동진 (한국원자력연구원 원자력재료기술개발부) ;
  • 김홍표 (한국원자력연구원 원자력재료기술개발부)
  • Received : 2011.09.20
  • Accepted : 2011.10.28
  • Published : 2011.10.01

Abstract

In the present study, denting corrosion experiments were performed as a function of crevice gap size (50, 100 and 200 ${\mu}m$) in a solution containing 3,500 ppm NaCl + 0.2 M $CuCl_2$ (pH = 3 adjusted by HCl). The effects of chloride ion concentrations (3, 3,500 and 35,000 ppm as NaCl) were also outlined with two different crevice gap sizes (100, 200 ${\mu}m$). In addition, the effect of NiB on the denting corrosion was also investigated in a solution of 35,000 ppm NaCl + 0.2 M $CuCl_2$ (pH = 3 adjusted by HCl). The results showed that denting rate increased with the increasing crevice gap size at an initial stage and became nearly constant afterwards. As the concentration of chloride ion increased, the denting rate also increased. However, the addition of a NiB powder of 4 g/L in to the acid-chloride solution was observed to suppress the denting rate significantly.

Keywords

References

  1. EPRI, Proceedings: Support-structure corrosion in steam generators NP-2791 (1982).
  2. EPRI, The effects of oxygen, copper, and acid chlorides of denting corrosion report NP-4648 (1986).
  3. M. J. Wooten, G. Economy, A. R. Pebler, and W. T. Lindsey, Jr., Mater. Perform., 17, 30 (1978).
  4. EPRI, Causes of denting vol.1: summary report NP-3275 (1984).
  5. J. R. Park and D. D. Macdonald, Corros. Sci., 23, 295 (1983). https://doi.org/10.1016/0010-938X(83)90063-X
  6. J. Robertson and J. E. Forest, Corros. Sci., 32, 521 (1991). https://doi.org/10.1016/0010-938X(91)90105-X
  7. R. Garnsey, Nucl. Energy, 18, 117 (1979).
  8. F. Nordmann, G. Pinard-Legry, J. Daret, and J. P. Brunet, J. Eng. Power, 105, 755 (1983). https://doi.org/10.1115/1.3227478
  9. T. A. Beineke, J. F. Hall, K. E. Marugg, D. B. Scott, R. M. Orsulak, E. E. Grondahl, E. J. Silva, and G. C. Fink, J. Eng. Power, 105, 763 (1983). https://doi.org/10.1115/1.3227479
  10. P. J. Millett and J. M. Fenton, Corrosion, 46, 710 (1990). https://doi.org/10.5006/1.3585172
  11. G. M. W. Mann and R. Garnsey, Mater. perform., 19, 32 (1980).
  12. D. R. Diercks, W. J. Shark, and J. Muscara, Nucl. Eng. Des., 194, 19 (1999). https://doi.org/10.1016/S0029-5493(99)00167-3
  13. M. Kowaka, Metal Corrosion Damage and Protection Technology, Allerton Press, Inc., pp. 57-61 (1990).
  14. F. R. Perez, C. A. Barrero, A. R. HightWalker, K. E. Garcia, and K. Nomura, Mater. Chem. Phys., 117 (2009).
  15. D.-J. Kim, H. P. Kim, S. S. Hwang, J. S. Kim, and J. Park, J. Nanosci. Nanotech, 10, 85 (2010). https://doi.org/10.1166/jnn.2010.1530