Natural Compounds with Antioxidant Activity: Recent Findings from Studies on Medicinal Plants

  • 투고 : 2011.04.06
  • 심사 : 2011.05.29
  • 발행 : 2011.06.30

초록

Reactive oxygen species potentially cause damage to cellular components including lipids, protein and DNA; this oxidative damage plays a key role in the pathogenesis of neurodegenerative disease, cardiovascular disease, metabolic disease and cancer. On the basis of the oxidative stress hypothesis, a number of studies have been performed to search for an efficient and safe antioxidant. Although in vitro studies have provided promising results, only a limited number of natural and synthetic antioxidants have been developed for clinical application due to their low efficacy and side-effects. Thus, the discovery of new antioxidants with marked efficacy and safety has attracted worldwide attention in recent decades. Since plants are recognized as important sources of natural antioxidants, our research has focused on the discovery of new naturally occurring antioxidants from medicinal plants. The purpose of this review is to open a new prospect in the field of search for natural antioxidants from medicinal plants by summarizing our recent findings. Using in vitro bioassay systems such as 2,2-diphenyl-1-picrylhydrazyl, superoxide radical scavenging tests and lipid peroxidation models, we have tested over than 350 species of medicinal plants for their antioxidant activity and selected several of them for further investigation. During the research on the discovery of effective natural antioxidants from the medicinal plants selected, we have isolated several new and known antioxidant compounds that include stilbene glycosides, phenolic glycosides, flavonoids, oligostilbenes, and coumarins. Our results suggest that the presence of antioxidant compounds in the medicinal plants might be associated with the traditional use to treat inflammation, cardiovascular disease and various chronic diseases.

키워드

참고문헌

  1. Asakawa, Y., Takemoto, T., Wollenweber, E., Aratani, T., Lasiocarpin A, B and C, three novel phenolic triglycerides from Populus lasiocarpa. Phytochemistry 16, 1791-1795 (1977). https://doi.org/10.1016/0031-9422(71)85091-4
  2. Augustyniak, A., Bartosz, G., Cipak, A., Duburs, G., Horakova, L., Luczaj, W., Majekova, M., Odysseos, A.D., Rackova, L., Skrzydlewska, E., Stefek, M., Strosova, M., Tirzitis, G., Venskutonis, P.R., Viskupicova, J., Vraka, P.S., and Zarkovi, N., Natural and synthetic antioxidants: an updated overview. Free Radic. Res. 44, 1216-1262 (2010). https://doi.org/10.3109/10715762.2010.508495
  3. Bae, K.H., The Medicinal Plants of Korea, Kyo-Hak Publishing Co., Seoul, 2001.
  4. Bors, W., Heller W., Michel C., and Saran M., Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Methods Enzymol. 186, 343-355 (1990).
  5. Bruneton, J., Pharmacognosy: Phytochemistry, Medicinal Plants, 2nd edn. Lavoisier Publishing, Paris, 1999, pp. 225-459.
  6. Chang, C.S., Flavonoids chemistry of Weigela (Caprifoliaceae) in Korea. J. Plant Res. 110, 275-281 (1997). https://doi.org/10.1007/BF02509316
  7. Choi, S.Z., Lee, S.O., Jang, K.U., Chung, S.H., Park, S.H., Kang, H.C., Yang, E.Y., Cho, H.J., and Lee, K.R., Antidiabetic stilbene and anthraquinone derivatives from Rheum undulatum. Arch. Pharm. Res. 28, 1027-1030 (2005). https://doi.org/10.1007/BF02977396
  8. Davis, K.J.A., Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50, 279-289 (2000). https://doi.org/10.1080/15216540051081010
  9. Do, T.H., Kim, H.J., Thuong, P.T., Ngoc, T.M., Lee, I.S., Hung, N.D., and Bae, K.H., Antioxidant and lipoxygenase inhibitory activity of oligostilbenes from the leaf and stem of Vitis amurensis. J. Ethnopharmacol. 125, 304-309 (2009). https://doi.org/10.1016/j.jep.2009.06.019
  10. Erickson, R.L., Pearl, I.A., and Darling, S.F., Further investigations of the hot water extractives of Populus grandidentata Michx. bark. Tappi 53, 240-244 (1970).
  11. Evans, P. and Halliwell, B., Free radicals and hearing. Cause, consequence, and criteria. Ann. N. Y. Acad. Sci. 884, 19-40 (1999). https://doi.org/10.1111/j.1749-6632.1999.tb08633.x
  12. Han, D.S. and Cho, H.J., Studies on the anthraquinones of the roots of Polygonum ciliinerve Owi. Kor. J. Pharmacogn. 12, 221-226 (1981).
  13. Hou, L., Zhou, B., Yang, L., and Liu, Z.L., Inhibition of human low density lipoprotein oxidation by flavonols and their glycosides. Chem. Phys. Lipids 129, 209-219 (2004a). https://doi.org/10.1016/j.chemphyslip.2004.02.001
  14. Hou, L., Zhou, B., Yang, L., and Liu, Z.L., Inhibition of free radical initiated peroxidation of human erythrocyte ghosts by flavonols and their glycosides. Org. Biomol. Chem. 2, 1419-1423 (2004b). https://doi.org/10.1039/b401550a
  15. Huang, K.S., Lin, M., and Cheng, G.F., Anti-inflammatory tetramers of resveratrol from the roots of Vitis amurensis and the conformations of the seven-membered ring in some oligostilbenes. Phytochemistry 58, 357-365 (2001). https://doi.org/10.1016/S0031-9422(01)00224-2
  16. Huang, K.S., Lin, M., Yu, L.N., and Kong, M., Four novel oligostilbenes from the roots of Vitis amurensis. Tetrahedron 56, 1321-1329 (2000). https://doi.org/10.1016/S0040-4020(99)01034-0
  17. Huang, K.S. and Lin, M., Oligostilbenes from the roots of Vitis amurensis. J. Asian Nat. Prod. Res. 2, 21-28 (1999). https://doi.org/10.1080/10286029908039886
  18. Huang, K.S., Lin, M., and Wang, Y.H., Synthesis of amurensin H, a new resveratrol dimer from the roots of Vitis amurensis. Chin. Chem. Lett. 10, 817-819 (1999a).
  19. Huang, K.S., Lin, M., Yu, L.N., and Kong, M., A new oligostilbene from the roots of Vitis amurensis. Chin. Chem. Lett. 10, 775-776 (1999b).
  20. Hung, T.M., Lee, J.P., Min, B.S., Choi, J.S., Na, M., Zhang, X.F., Ngoc, T.M., Lee, I.S., and Bae, K.H., Magnoflorine from Coptidis Rhizoma protects high density lipoprotein during oxidant stress. Biol. Pharm. Bull. 30 1157-1160 (2007). https://doi.org/10.1248/bpb.30.1157
  21. Hung, T.M., Na, M., Thuong, P.T., Su, N.D., Sok, D.E., Song, K.S., Seong, Y.H., and Bae, K.H., Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall. J. Ethnopharmacol. 108, 188-192 (2006). https://doi.org/10.1016/j.jep.2006.04.029
  22. Jang, M.H., Piao, X.L., Kim, H.Y., Cho, E.J., Baek, S.H., Kwon, S.W., and Park, J.H., Resveratrol oligomers from Vitis amurensis attenuate - amyloid-induced oxidative stress in PC12 cells. Biol. Pharm. Bull. 30, 1130-1134 (2007). https://doi.org/10.1248/bpb.30.1130
  23. Jin, W.Y., Thuong, P.T., Su, N.D., Min, B.S., Son, K.H., Chang, H.W., Kim, H.P., Kang, S.S., Sok, D.E., and Bae, K.H., Antioxidant activity of Cleomiscosins A and C isolated from Acer okamotoanum. Arch. Pham. Res. 30, 275-281 (2007). https://doi.org/10.1007/BF02977606
  24. Jossang, A., Jossang, P., and Bodo, B., Cinnamrutinoses A and B, glycosides of Populus tremula. Phytochemistry 35, 547-549 (1994). https://doi.org/10.1016/S0031-9422(00)94801-5
  25. Jung, K.Y., Do, J.C., and Son, K.H., Triterpene glycosides from the roots of Dipsacus asper. J. Nat. Prod. 56, 1912-1916 (1993). https://doi.org/10.1021/np50101a007
  26. Kamat, C.D., Gadal, S., Mhatre, M., Williamson, K.S., Pye, Q.N., and Hensley, K., Antioxidants in central nervous system diseases: preclinical promise and translational challenges. J. Alzheimers Dis. 15, 473-493 (2008). https://doi.org/10.3233/JAD-2008-15314
  27. Kim, H.J., Chung S.K., and Choi S.W., Lipoxygenase inhibitors from Paeonia lactiflora seeds. J. Food Sci. Nutr. 4, 163-166 (1999).
  28. Kim, C.M., Shin, M.K., An, D.K., and Lee, K.S., Dictionary of Traditional Medicines, 1998a.
  29. Kim, H.J., Woo, E.R., Shin, C.G., and Park, H.K., A new flavonol glycoside gallate ester from Acer okamotoanum and its inhibitory activity against human immunodeficiency virus-1(HIV-1) integrase. J. Nat. Prod. 61, 145-148 (1998b). https://doi.org/10.1021/np970171q
  30. Kim, J.H., Hart, H.T., and Stevens, J.F., Alkaloids of some Asian Sedum species. Phytochemistry 41, 1319-1324 (1996). https://doi.org/10.1016/0031-9422(95)00562-5
  31. Kokubun, T., Harborne, J.B., Eagles, J., and Waterman, P.G., Antifungal biphenyl compounds are the phytoalexins of the sapwood of Sorbus acuparia. Phytochemistry 40, 57-59 (1995). https://doi.org/10.1016/0031-9422(95)00307-S
  32. Kouno, I., Tsuboi, A., Nanri, M., and Kawano, N., Acylated triterpene glycoside from roots of Dipsacus asper. Phytochemistry 29, 338-339 (1990). https://doi.org/10.1016/0031-9422(90)89068-K
  33. Lastra, C.A. and Villegas, I., Resveratrol as anti-inflamatory and antiaging agent: Mechanisms and clinical implication. Mol. Nutr. Food Res. 49, 405-430 (2005). https://doi.org/10.1002/mnfr.200500022
  34. Lee, S.O., Lee, H.W., Lee, I.S., and Im, H.G., The pharmacological potential of Sorbus commixta cortex on blood alcohol concentration and hepatic lipid peroxidation in acute alcohol-treated rats. J. Pharm. Pharmacol. 58, 685-693 (2006a). https://doi.org/10.1211/jpp.58.5.0014
  35. Lee, E.O., Lee, H.J., Hwang, H.S., Ahn, K.S., Chae, C., Kang, K.S., Lu, J., and Kim, S.H., Potent inhibition of Lewis lung cancer growth by heyneanol A from the roots of Vitis amurensis through apoptotic and anti-angiogenic activities. Carcinogenesis 27, 2059-2069 (2006b). https://doi.org/10.1093/carcin/bgl055
  36. Lee, J.P., Min, B.S., An, R.B., Na, M., Lee, S.M., Lee, H.K., Kim, J.G., Bae, K.H., and Kang, S.S., Stilbenes from the roots of Pleuropterus ciliinervis and their antioxidant activities. Phytochemistry 64, 759-763 (2003). https://doi.org/10.1016/S0031-9422(03)00417-5
  37. Li, C.M., Liu, Z.F., Tian, J.W., Li, G.S., Jiang, W.L., Zhang, G.B., Chen, F.F., Lin, P.Y., and Ye, Z.G., Protective roles of Asperosaponin VI, a triterpene saponin isolated from Dipsacus asper Wall on acute myocardial infarction in rats. Eur. J. Pharmacol. 627, 235-241 (2010). https://doi.org/10.1016/j.ejphar.2009.11.004
  38. Martin-Aragon, S., Benedi, J., and Villar, A., Oxygen active speciesscavenger properties of coumarins. Phytother. Res. 10, S75-S78 (1996).
  39. Matsuda, H., Morikawa, T., Toguchida, I., Park, J.Y., Harima, S., and Yoshikawa, M., Antioxidant constituents from Rhubarb: Structural requirements of stilbenes for the activity and structures of two new anthraquinone glucosides. Bioorg. Med. Chem. 9, 41-50 (2001). https://doi.org/10.1016/S0968-0896(00)00215-7
  40. Mattes, B.R., Clausen, T.P., and Reichardt, P.B., Volatile Constituents of Balsam Poplar: The phenol glycoside connection. Phytochemistry 26, 1361-1366 (1987). https://doi.org/10.1016/S0031-9422(00)81813-0
  41. Min, B.S., Lee, J.P., Na, M., An, R.B., Lee, S.M., Lee, H.K., Bae, K., and Kang, S.S., A new naphthopyrone from the root of Pleuropterus ciliinervis. Chem. Pharm. Bull. 51, 1322-1324 (2003). https://doi.org/10.1248/cpb.51.1322
  42. Moon, H.S. and Kwon, S.D., Sap collection and major components of Acer okamotoanum Nakai native in Ullungdo. Korean J. Med. Crop Sci. 12, 249-254 (2004).
  43. Mu, L.H., Li, J.B., Yang, J.Z., and Zhang, D.H., New dibenz[b,f]oxepins from Cercis chinensis Bunge. J. Asian. Nat. Prod. Res. 9, 649-653 (2007). https://doi.org/10.1080/10286020600979860
  44. Murray, R.D.H., Coumarins. Nat. Prod. Rep. 8, 591-624 (1989).
  45. Na, M., Min, B.S., and Bae, K., Antioxidant compounds from Cercis chinensis Bunge. Bull. Korean Chem. Soc. 30, 2765-2768 (2009). https://doi.org/10.5012/bkcs.2009.30.11.2765
  46. Na, M., An, R.B., Lee, S.M., Min, B.S., Kim, Y.H., Bae, K., and Kang, S.S., Antioxidant compounds from the stem bark of Sorbus commixta. Nat. Prod. Sci. 8, 26-29 (2002).
  47. Namba, T., The Encyclopedia of Wakan-Yaku (Traditional Sino-Japanese Medicines) with Color Pictures, Vol. 1, Hoikusha Publishing Co. Ltd., Osaka, 1993.
  48. Ngoc, T.M., Hung, T.M., Thuong, P.T., Na, M.K., Kim, H.J., Ha, D.T., Min, B.S., Minh, P.T.H., and Bae, K.H., Inhibition of human low density lipoprotein and high density lipoprotein oxidation by oligostilbenes from Rhubarb. Biol. Pharm. Bull. 31, 1809-1812 (2008). https://doi.org/10.1248/bpb.31.1809
  49. Park, H.J., Choi, Y.A., Kang, C.S., Kim, D.K., Thuong, P.T., Kim, Y.H., Bae, K.H., and Lee, Y.M., Suppression of cyclooxygenase-2 expression in colonic epithelial cells by Ilekudinol B isolated from Weigela subsessilis. Nat. Prod. Sci. 12, 38-43 (2006).
  50. Paya, M., Halliwell, B., and Hoult, J.R., Interactions of a series of coumarins with reactive oxygen species. Scavenging of superoxide, hypochlorous acid, and hydroxyl radicals. Biochem. Pharmacol. 44, 205-214 (1992). https://doi.org/10.1016/0006-2952(92)90002-Z
  51. Pearl, I.A. and Darling, S.F., Phenolic extractives of Salix purpurea bark. Phytochemistry 9, 1277-1281 (1970). https://doi.org/10.1016/S0031-9422(00)85319-4
  52. Picard, S., Chenault, J., Augustin, S., and Venot, C., Isolation of a new phenolic compound from leaves of Populus deltoides. J. Nat. Prod. 57, 808-810 (1994). https://doi.org/10.1021/np50108a018
  53. Roberts, C.K. and Sindhu, K.K., Oxidative stress and metabolic syndrome. Life Sci. 84, 705-712, (2009). https://doi.org/10.1016/j.lfs.2009.02.026
  54. Salatino, A., Salatino, M.L.F., Giannasi, D.E., Flavonoids and the taxonomy of Cercis, Biochem. Syst. Eco. 28, 545 (2000). https://doi.org/10.1016/S0305-1978(99)00093-9
  55. Sohn, E.J., Kang, D.G., Mun, Y.J., Woo, W.H., and Lee, H.S., Antiatherogenic effects of the methanol extract of Sorbus cortex in atherogenic-diet rats. Biol. Pharm. Bull. 28, 1444-1449 (1995).
  56. Song, J.H., Yang, T.C., Chang, K.W., Han, S.K., Yi, H.K., and Jeon, J.G., In vitro anti-carcinogenic activity of dichloromethane fraction from Rheum undulatum L. Root. Arch. Pharm. Res. 29, 490-496 (2006). https://doi.org/10.1007/BF02969422
  57. Stevens, J.F., Hart, H., Elema, E.T., and Block, A., Flavonoid variation in Eurasian Sedum and Sempervivum. Phytochemistry 41, 503-512 (1996). https://doi.org/10.1016/0031-9422(95)00573-0
  58. Suh, H.W., Song, D.K., Huh, S.O., Son, K.H., and Kim, Y.H., Antinoceptive mechanisms of Dipsacus saponin C administered intrathecally in mice. J. Ethnopharmacol. 71, 211-218 (2000). https://doi.org/10.1016/S0378-8741(99)00204-4
  59. Tang, W. and Eisenbrand, G., Chinese Drugs of Plant Origin, Chemistry, Pharmacology, and Use in Traditional and Modern Medicine. Springer, Berlin, 1992.
  60. Thuong, P.T., Hung, T.M., Ngoc, T.M., Ha, D.T., Min, B.S., Kwack, S.J., Kang, T.S., Choi, J.S., and Bae, K.H., Antioxidant activities of coumarins from Korea medicinal plants and their structure-activity relationships. Phytother. Res. 24, 101-106 (2010). https://doi.org/10.1002/ptr.2890
  61. Thuong, P.T., Kang, H.J., Na, M., Jin, W.Y., Youn, U.J., Seong, Y.H., Song, K.S., Min, B.S., and Bae, K.H., Anti-oxidant constituents from Sedum takesimense. Phytochemistry 68, 2432-2438 (2007). https://doi.org/10.1016/j.phytochem.2007.05.031
  62. Thuong, P.T., Min, B.S., Jin, W.Y., Na, M., Lee, J.P., Seong, R.S., Lee, M.Y., Song, K.S., Seong, Y.H., Lee, H.K., Bae, K.H., and Kang, S.S., Anti-complementary activity of ursane-type triterpenoids from Weigela subsessilis. Biol. Pharm. Bull. 29, 830-833 (2006). https://doi.org/10.1248/bpb.29.830
  63. Thuong, P.T., Na, M., Su, N.D., Seong, R.S., Lee, Y.M., Sok, D.E., and Bae, K.H., Inhibitory effect of coumarins from Weigela subsessilis on low density lipoprotein oxidation. Biol. Pharm. Bull. 28, 1095-1097 (2005). https://doi.org/10.1248/bpb.28.1095
  64. Thuong, P.T., Pokharel, Y.R., Lee, M.Y., Kim, S.K., Bae, K.H., Su, N.D., Oh, W.K., and Kang, K.W. Dual anti-oxidative effects of fraxetin isolated from Fraxinus rhinchophylla. Biol. Pharm. Bull. 32, 1527- 1532 (2009). https://doi.org/10.1248/bpb.32.1527
  65. Van Gelderen, C.J. and Van Gelderen, D.M., Maples for Gardens: A Color Encyclopedia, 1999.
  66. Wang, B.X., Contemporary Pharmacology of Chinese Herbal Medicine, Tianjin Science and Technology Press, Tianjin, 1999, pp. 1263-1264.
  67. Won, H.M., Kwon, Y.S., Lee, J.H., and Kim, C.M., Chemical constituents of the leaves of Weigela subsessilis. Kor. J. Pharmacog. 35, 1-5 (2004).
  68. Wong, Y.T., Wong, K.K., Yeung, K., and Mo, G., Pharmacology and clinical research on Dipsacus asperoides. Pharmacol. Clin. Chin. Mater. Med. 3, 20-24 (1996).
  69. Xiao, P.G., Li, D.P., and Yang, S.L., In: Modern Chinese Materia Media. Vol 3, PG (ed). Chemistry Industry Publisher, Beijing, China, 2002, pp. 633.
  70. Xie, Z.F., Lou, Z.Q., Huang, X.K. (Eds.), Classified Dictionary of Traditional Chinese Medicine, New World Press, Beijing, 1994, pp. 385.
  71. Yoshizaki, M., Fujino, H., Arise, A., Ohmura, K., Arisawa, M., and Morita, N., Polygoacetophenoside, a new acetophenone glucoside from polygonum multiflorum. Planta Med. 53, 273-275 (1987). https://doi.org/10.1055/s-2006-962703
  72. Yun, B.S., Lee, I.K., and Ryoo, I.J., Coumarins with monoamine oxidase inhibitory activity and antioxidative coumarinolignans from Hibiscus syriacus. J. Nat. Prod. 64, 1238-1240 (2001). https://doi.org/10.1021/np0100946
  73. Zhang, X.F., Thuong, P.T., Min, B.S., Ngoc, T.M., Hung, T.M., Lee, I.S., Na, M.K., Seong, Y.H., Song, K.S., and Bae, K.H., Phenolic glycosides with antioxidant activity from the stem bark of Populus davidiana. J. Nat. Prod. 69, 1370-1373 (2006). https://doi.org/10.1021/np060237u
  74. Zhang, X., Thuong, P.T., Jin, W., Su, N.D., Sok, D.E., Bae, K., and Kang, S.S. Antioxidant activity of anthraquinones and flavonoids from flower of Reynoutria sachalinensis. Arch. Pharm. Res. 28, 22-27 (2005). https://doi.org/10.1007/BF02975130
  75. Zhou, S., Lin, M., Wang, Y.H., and Liu, X., Study on the chemical constituents of Populus davidiana Dode. Nat. Prod. Res. 14, 43-45 (2002).
  76. Zhou, F.W., Shi, M.S., and Zhou, J.L., Chinese Herbology, Shandong Science and Technology Press, Weifang, Shandong, 1981, pp. 596- 597.