Screening of Herbal Medicines from China with Inhibitory Activity on Advanced Glycation End Products (AGEs) Formation (VI)

중국약용식물의 최종당화산물 생성저해활성 검색 (VI)

  • Lee, Yun-Mi (Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine) ;
  • Kim, Young-Sook (Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine) ;
  • Kim, Joo-Hwan (Department of Life Science, Kyungwon University) ;
  • Kim, Jin-Sook (Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine)
  • 이윤미 (한국한의학연구원 한의융합연구본부 당뇨합병증연구센터) ;
  • 김영숙 (한국한의학연구원 한의융합연구본부 당뇨합병증연구센터) ;
  • 김주환 (경원대학교 생명과학과) ;
  • 김진숙 (한국한의학연구원 한의융합연구본부 당뇨합병증연구센터)
  • Received : 2011.04.14
  • Accepted : 2011.06.16
  • Published : 2011.06.30

Abstract

Advanced glycation end products (AGEs) has been shown to play an important role in the development of the diabetic complications. The AGEs inhibitors or cross-link breakers attenuate various functional and structural manifestations of diabetic complications. In this study, 69 China herbal medicines have been investigated with an in vitro evaluation system using AGEs inhibitory activity. Of these, 28 herbal medicines $IC_{50}$=<50 ${\mu}g/ml$) were found to have stronger AGEs inhibitory activity compared with aminoguanidine ($IC_{50}$=59.77 ${\mu}g/ml$). Particularly, 5 herbal medicines, Camptotheca acuminata (stem, leaf), Eurya groffii (stem, leaf), Cornus Capitata (leaf), Mucuna birdwoodiana (root), Nelumbo nucifera (fruit, seed) showed more potent inhibitory activity (approximately 6-27 fold) than the positive control aminoguanidine.

Keywords

References

  1. Ahmed, N. (2005) Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 67: 3-21. https://doi.org/10.1016/j.diabres.2004.09.004
  2. Larkins, R. G. and Dunlop, M. E. (1992) The link between hyperglycaemia and diabetic nephropathy. Diabetologia 35: 499-504. https://doi.org/10.1007/BF00400475
  3. Yokozawa, T., Nakagawa, T. and Terasawa, K. (2001) Effects of oriental medicines on the production of advanced glycation endproducts. J. trad. Med. 18: 107-112.
  4. Huebschmann, A. G., Vlassara, H., Regensteiner, J. G. and Reusch, J. (2006) Diabetes and advanced glycoxidation end products. Diabetes care. 29: 1420-1432. https://doi.org/10.2337/dc05-2096
  5. Rahbar, S. and Figarola, J. L. (2003) Novel inhibitors of advenced glycation endproducts. Arch. Biochem. Biophys. 419: 63-79. https://doi.org/10.1016/j.abb.2003.08.009
  6. Wilkinson-Berka, J. L., Kelly, D. J., Koerner, S. M., Jaworski, K., Davis, B., Thallas, V. and Cooper, M. E. (2002) ALT-946 and aminoguanidine, inhibitors of advanced glycation, improve severe nephropathy in the diabetic transgenic (mREN-2) 27 rat. Diabetes 51: 3283-3289. https://doi.org/10.2337/diabetes.51.11.3283
  7. Peppa, M., Brem, H., Cai, W., Zhang, J. G., Basgen, J., Li, Z., Vlassara, H. and Uribarri, J. (2006) Prevention and reversal of diabetic nephropathy in db/db mice treated with alagebrium (ALT-711). Am. J. Nephrol. 26: 430-436. https://doi.org/10.1159/000095786
  8. Yang, S., Litchfield, J. E. and Baynes, J. W. (2003) AGEbreakers cleave model compounds, but do not break maillard crosslinks in skin and tail collagen from diabetic rats. Arch. Biochem. Biophys. 412: 42-46. https://doi.org/10.1016/S0003-9861(03)00015-8
  9. Jang, D. S., Kim, J. M., Lee, Y. M., Kim, Y. S., Kim. J. H. and Kim, J. S. (2006) Puerariafuran, a new inhibitor of advanced glycation end products (AGEs) isolated from the roots of Pueraria lobata. Chem. Pharm. Bull. 54:1315-1317. https://doi.org/10.1248/cpb.54.1315
  10. Jang, D. S., Lee, Y. M., Jeong, I. H. and Kim, J. S. (2010) Constituents of the flowers of Platycodon grandiflorum with inhibitory activity on advanced glycation end products and rat lens aldose reductase in vitro. Arch. Pharm. Res. 33: 875-880. https://doi.org/10.1007/s12272-010-0610-x
  11. Jang, D. S., Lee, G. Y., Lee, Y. M., Kim, Y. S., Sun, H., Kim, D. H. and Kim, J. S. (2009) Flavan-3-ols having a gammalactam from the roots of Actinidia arguta inhibit the formation of advanced glycation end products in vitro. Chem. Pharm. Bull. 57: 397-400. https://doi.org/10.1248/cpb.57.397
  12. Jang, D. S., Yoo, N. H., Kim, N. H., Lee, Y. M., Kim, C. S., Kim, J. Kim, J. H. and Kim, J. S. (2010) 3,5-Di-O-caffeoylepi- quinic acid from the leaves and stems of Erigeron annuus inhibits protein glycation, aldose reductase and cataractogenesis. Biol. Pharm. Bull. 33: 329-333. https://doi.org/10.1248/bpb.33.329
  13. Kim, J. M., Jang, D. S., Lee, Y. M., Yoo, J. L., Kim. Y. S., Kim, J. H and Kim, J. S. (2008) Aldose reductase and protein glycation inhibitory principles from the whole plant of Duchesnea chrysantha. Chem. Biodivers. 5: 352-356. https://doi.org/10.1002/cbdv.200890034
  14. Yoo, N. H., Jang, D. S., Lee, Y. M., Jeong, I. H., Cho, J. H., Kim, J. H. and Kim, J. S. (2010) Anthraquinones from the roots of Knoxia valerianoides inhibit the formation of advanced glycation end products and rat lens aldose reductase in vitro. Arch. Pharm. Res. 33: 209-214. https://doi.org/10.1007/s12272-010-0204-7
  15. Lee, G. Y., Jang, D. S., Lee, Y. M., Kim, J. M. and Kim, J. S. (2006) Naphthopyrone glucosides from the seeds of Cassia tora with inhibitory activity on advanced glycation end products (AGEs) formation. Arch. Pharm. Res. 29: 587-590. https://doi.org/10.1007/BF02969270
  16. Lee, J., Jang, D. S., Kim, N. H., Lee, Y. M., Kim, J. and Kim, J. S. (2011) Galloyl glucoses from the seeds of Cornus officinalis with inhibitory activity against protein glycation, aldose reductase, and cataractogenesis ex vivo. Biol. Pharm. Bull. 34: 443-446. https://doi.org/10.1248/bpb.34.443
  17. Sohn, E. J., Kim, Y. S., Kim, C. S., Lee, Y. M. and Kim, J. S. (2009) KIOM-79 prevents apoptotic cell death and AGEs accumulation in retinas of diabetic db/db mice. J. Ethnopharmacol. 121: 171-174. https://doi.org/10.1016/j.jep.2008.09.036
  18. Kim, Y. S., Lee, Y. M., Kim, C. S., Sohn, E. J., Jang, D. S. and Kim, J. S. (2006) Inhibitory effect of KIOM, a new herbal prescription, on AGEs formation and expression of type IV collagen and TGF-${\beta}1$ in STZ-induced diabetic rats. Kor. J. Pharmacogn. 37: 103-109.
  19. Kim, Y. S., Kim, J., Kim, C. S., Sohn, E. J., Lee, Y.M., Jeong, I. H., Kim, H., Jang, D. S. and Kim, J. S. (2009) KIOM-79, an inhibitor of AGEs-protein cross-linking, prevents progression of nephropathy in Zucker diabetic fatty rats. Evid. Based Complement. Alternat. Med. 2009 Jul 15. [Epub ahead of print]
  20. Sohn, E., Kim, J., Jeong, I. H., Kim, C. S., Kim, Y. S. and Kim, J. S. (2011) Combination of medicinal herbs KIOM-79 reduces advanced glycation end product accumulation and the expression of inflammatory factors in the aorta of Zucker diabetic fatty rats. Evid. Based Complement. Alternat. Med. 2011:784136. Epub 2011 Feb 15.
  21. Jang, D. S., Lee, Y. M., Kim, Y. S. and Kim, J. S. (2006) Screening of Korean traditional herbal medicines with inhibitory activity on advanced glycation end products (AGEs) formation. Kor. J. Pharmacogn. 37: 48-52.
  22. Lee, Y. M., Kim, Y. S., Kim, J. M., Jang, D. S., Kim, J. H., Yoo, J. L. and Kim, J. S. (2008) Screening of Korean herbal medicines with inhibitory activity on advanced glycation end products (AGEs) formation (II). Kor. J. Pharmacogn. 39: 223-227.
  23. Jeong, I. H., Kim, J. M., Jang, D. S., Kim, J. H., Cho, J. H. and Kim, J. S. (2009) Screening of Korean herbal medicines with iInhibitory activity on advanced glycation end products (AGEs) formation (III). Kor. J. Pharmacogn. 40: 382-387.
  24. Kim, J. M., Kim, Y. S., Kim, J. H., Yoo, J. L. and Kim, J. S. (2009) Screening of herbal medicines from China and Vietnam with inhibitory activity on advanced glycation end products (AGEs) formation (IV). Kor. J. Pharmacogn. 40: 388- 393.
  25. Vinson, J. A. and Howard III, T. B. (1996) Inhibition of protein glycation and advanced glycation endproducts by ascorbic acid and other vitamins and nutrients. J. Nutr. Biochem. 7: 659-663. https://doi.org/10.1016/S0955-2863(96)00128-3
  26. Ding, T., Jiang, T., Zhou, J., Xu, L. and Gao, Z. M. (2010) Evaluation of antimicrobial activity of endophytic fungi from Camptotheca acuminata (Nyssaceae). Genet .Mol. Res. 9: 2104-2112.
  27. Ping, Y. H., Lee, H. C., Lee, J. Y., Wu, P. H., Ho, L. K., Chi, C. W., Lu, M. F. and Wang, J. J. (2006) Anticancer effects of low-dose 10-hydroxycamptothecin in human colon cancer. Oncol. Rep. 15: 1273-1279.
  28. Zhanga, J., Yu, Y., Liua, D. and Liua, Z. (2007) Extraction and composition of three naturally occurring anti-cancer alkaloids in Camptotheca acuminata seed and leaf extracts. Phytomedicine 14: 50-56.
  29. Tanaka, N., Tanaka, T., Fujioka, T., Fujii, H., Mihashi, K., Shimomura, K. and Ishimaru. K. (2001) An ellagic compound and iridoids from Cornus capitata root cultures. Phytochemistry 57: 1287-1291. https://doi.org/10.1016/S0031-9422(01)00179-0
  30. Tanaka, N., Nishikawa, K. and Ishimaru, K. (2003) Antioxidative capacity of extracts and constituents in Cornus capitata adventitious roots. J. Agric. Food Chem. 51: 5906-5910. https://doi.org/10.1021/jf030267s
  31. Bhakuni, D. S., Dhar, M., Ar, M. L., Dhawan, B. N. and Mehrotra, B. N. (1969) Screening of Indian plants for biological activities. Part . Indian J. Exp. Biol. 7: 250-262.
  32. Smolenski, S. J., Silinis, H. and Farnsworth, N. R. (1974) Alkaloid screening. J. Nat. Prod. 37: 506-536.
  33. Chiang Su New Medical College, Dictionary of Chinese Medicine (Shanghai Science and Technology Press, Shanghai, 1977, Vol. I, p. 2071.
  34. Gong, T., Zhang, T., Wang, D. X., Liu, P., Chen, R. Y. and Yu, D. Q. (2010) Two new isoflavone glycosides from Mucuna birdwoodiana. J. Asian Nat. Prod. Res. 12: 199-203. https://doi.org/10.1080/10286020903517540
  35. Ding, Y., Kinjo, J., Yang, C. R. and Nohara, T. (1991) Triterpenes from Mucuna birdwoodiana. Phytochemistry 30: 3703-3707. https://doi.org/10.1016/0031-9422(91)80094-H
  36. Chen, Y., Fan, G. R., Wu, H. L., Wu, Y. T. and Mitchell, A. (2007) Separation, identification and rapid determination of liensine, isoliensinine and neferine from embryo of the seed of Nelumbo nucifera Gaertn by liquid chromatography coupled to diode array detector and tandem mass spectrometry. J. Pharm. Biomed. Anal. 43: 99-104. https://doi.org/10.1016/j.jpba.2006.06.016
  37. Liu, C. P., Tsai, W. J., Lin, Y. L., Liao, J. F., Chen, C. F. and Kuo, Y. C. (2004) The extracts from Nelumbo Nucifera suppress cell cycle progression, cytokine genes expression, and cell proliferation in human peripheral blood mononuclear cells. Life Sci. 75: 699-716. https://doi.org/10.1016/j.lfs.2004.01.019
  38. Mukherjee, P. K., Saha, K., Balasubramanian, R., Pal, M. and Saha, B. P. (1996) Studies on psychopharmacological effects of Nelumbo nucifera Gaertn. rhizome extract. J. Ethnopharmacol. 54: 63-67. https://doi.org/10.1016/S0378-8741(96)01455-9
  39. Kashiwada, Y., Aoshima, A., Ikeshiro, Y., Chen, Y. P., Furukawa, H., Itoigawa, M., Fujioka, T., Mihashi, K., Cosentino, L. M., Morris-Natschke, S. L. and Lee, K. H. (2005) Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. Bioorg. Med. Chem. 13: 443- 448. https://doi.org/10.1016/j.bmc.2004.10.020
  40. Chen, Y., Fan, G., Wu, H., Wu, Y. and Mitchell, A. (2007) Separation, identification and rapid determination of liensine, isoliensinine and neferine from embryo of the seed of Nelumbo nucifera Gaertn. by liquid chromatography coupled to diode array detector and tandem mass spectrometry. J. Pharm. Biomed. Anal. 43: 99-104. https://doi.org/10.1016/j.jpba.2006.06.016
  41. Huang, C. F., Chen, Y. W., Yang, C. Y., Lin, H. Y., Way, T. D., Chiang, W. and Liu, S. H. (2011) Extract of Lotus leaf (Nelumbo nucifera) and its active constituent catechin with insulin secretagogue activity. J. Agric. Food Chem. 59: 1087- 1094. https://doi.org/10.1021/jf103382h