DOI QR코드

DOI QR Code

Optimization of Powder Core Inductors of Buck-Boost Converters for Hybrid Electric Vehicles

  • You, Bong-Gi (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Jong-Soo (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Lee, Byoung-Kuk (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Choi, Gwang-Bo (R&D Center, Changsung Corporation) ;
  • Yoo, Dong-Wook (New & Renewable Energy System Research Center, Korea Electrotechnology Research Institute (KERI))
  • Received : 2010.11.08
  • Accepted : 2011.04.13
  • Published : 2011.07.01

Abstract

In the present paper, the characteristics of Mega-Flux$^{(R)}$, JNEX-Core$^{(R)}$, amorphous and ferrite cores are compared to the inductor of buck-boost converters for Hybrid Electric Vehicles. Core losses are analyzed at the condition of 10 kHz sine wave excitations, and permeability fluctuations vs. temperature and magnetizing force will be analyzed and discussed. Under the specifications of the buck-boost converter for 20 kW THS-II, the power inductor will be designed with Mega-Flux$^{(R)}$ and JNEX-Core$^{(R)}$, and informative simulation results will be provided with respect to dc bias characteristics, core and copper losses.

Keywords

References

  1. Toyota Motor Corporation, "TOYOTA PRIUS Manual," No. NCF255U, August, 2003.
  2. M. Ehsani, K. M. Rahman, M. D. Bellar, A. Severinsky, "Evaluation of soft switching for EV and HEV motor drives," IEEE Trans. on Industrial Electronics, vol. 48, no. 1, pp. 82-90, Feb., 2001. https://doi.org/10.1109/41.904559
  3. M. Gerber, J. A. Ferreira, "A high-density heat-sinkmounted inductor for automotive applications," IEEE Trans. on Industrial Electronics, vol. 40, no. 4, pp. 1031-1038, July/Aug., 2004. https://doi.org/10.1109/TIA.2004.830766
  4. T. E. Salem, D. P. Urciuoli, V. Lubomirsky, G. K. Ovrebo, "Design considerations for high power inductors in dc-dc converters," 22nd Annual IEEE Applied Power Electronics Conference and Exposition, pp. 1258-1263, Feb./Mar., 2007. https://doi.org/10.1109/APEX.2007.357676
  5. F. Liffran, "A procedure to optimize the inductor design in boost PFC applications," 13th Power Electronics and Motion Control Conference, pp. 409-416, Sept., 2008
  6. T. Saito, S. Takemoto, T. Iriyama, "Resistivity and core size dependencies of eddy current loss for Fe-Si compressed cores," IEEE Trans. on Magnetics, vol. 41, no. 10, pp. 3301-3303, Oct., 2005 https://doi.org/10.1109/TMAG.2005.854905

Cited by

  1. Wide Load Range Efficiency Improvement of a High-Power-Density Bidirectional DC–DC Converter Using an MR Fluid-Gap Inductor vol.51, pp.4, 2015, https://doi.org/10.1109/TIA.2014.2387485
  2. Design and Analysis of Electrical Properties of a Multilayer Ceramic Capacitor Module for DC-Link of Hybrid Electric Vehicles vol.8, pp.4, 2013, https://doi.org/10.5370/JEET.2013.8.4.808
  3. Revised Magnetics Performance Factors and Experimental Comparison of High-Flux Materials for High-Current DC–DC Inductors vol.26, pp.8, 2011, https://doi.org/10.1109/TPEL.2010.2103573
  4. Time Domain Based Digital Controller for Buck-Boost Converter vol.9, pp.5, 2014, https://doi.org/10.5370/JEET.2014.9.5.1551