DOI QR코드

DOI QR Code

Allowable Compressive Stress of Pre-Tensioned Members with Tee or Inverted Tee Sections at Transfer

T형 및 역T형 단면을 가지는 프리텐션부재의 프리스트레스 도입시 허용 압축응력

  • Lee, Deuck-Hang (Dept. of Architectural Engineering, University of Seoul) ;
  • Lee, Jeong-Yeon (Dept. of Architectural Engineering, University of Seoul) ;
  • Lim, Joo-Hyuk (Samsung Engineering and Construction, Housing Division) ;
  • Kim, Kang-Su (Dept. of Architectural Engineering, University of Seoul)
  • 이득행 (서울시립대학교 건축학부) ;
  • 이정연 (서울시립대학교 건축학부) ;
  • 임주혁 (삼성물산(주)건설부문) ;
  • 김강수 (서울시립대학교 건축학부)
  • Received : 2011.01.26
  • Accepted : 2011.04.08
  • Published : 2011.06.30

Abstract

In a previous research performed by the authors, the allowable compressive stress coefficient (K) in pretensioned members with rectangular section at transfer was proposed based on strength design theory. In this study, a subsequent research of an enormous analysis was performed to determine the K factor for Tee and inverted Tee section members, considering the effect of section height (h), section type, amount of tendons ($A_{ps}$), and eccentricity ratio (e/h). Based on the analysis results, the allowable compressive stress coefficients (K) for Tee and inverted Tee section members at transfer were derived, which limit the maximum allowable stresses as 80% and 70% of the compressive strengths at the time of release for Tee section and inverted Tee section, respectively. And these were larger than the allowable stresses specified in domestic and other international codes. In order to verify the proposed equations, they were compared to the test results available in literature and other codes, which showed that the allowable stresses in domestic and international codes are unconservative for the cases with low eccentricity ratios while conservative for those with high eccentricity ratios. The proposed equations, however, estimate the allowable stresses of the Tee and inverted Tee section members reasonably close to test results.

이 연구의 선행 연구에서는 강도 이론을 바탕으로 장방형 단면을 갖는 프리텐션 부재의 허용 압축응력 계수 산정식을 제안하였다. 이 연구에서는 프리스트레스 도입시 T형 단면 및 역T형 단면을 갖는 프리텐션 부재의 허용 압축응력 계수를 결정하기 위하여 선행 연구에서 적용한 강도 이론을 바탕으로 단면의 크기, 단면 형상, 긴장재량 및 편심비를 고려한 방대한 해석을 수행하였다. 해석 결과를 바탕으로 허용 압축응력 계수 산정식을 유도하였으며, 제안된 산정식은 프리스트레스 도입시 허용 압축응력을 T형 및 역T형 단면에서 각각 당시 콘크리트 압축강도의 80% 및 70%로 제한하였고 이는 기존의 설계기준들에서 제공하는 값보다 높은 수치였다. 제안식을 검증하기 위하여 기존의 수행된 실험 결과 및 각국의 설계기준과 비교한 결과, 낮은 편심비에서 국내 외 기준은 비안전측의 결과를, 높은 편심비에서는 오히려 과도하게 안전측의 결과를 제공할 수 있는 것으로 나타났으며, 이에 비해 제안식은 T형 및 역 T형단면을 갖는 프리텐션 부재의 허용 압축응력을 매우 합리적으로 평가하였다.

Keywords

References

  1. Collins, M. P. and Mitchell, D., Prestressed Concrete Structure, Prentice Hill, 1991, 766 pp.
  2. ACI Committee 318, Building Code Requirements for Structural Concrete and Commentary (ACI 318M-08), American Concrete Institute, Farmington Hills, 2008, 473 pp.
  3. Architectural Institute of Japan, Standard for Structural Design and Construction of Prestressed Concrete Structures, Architectural Institute of Japan, 1998, 474 pp.
  4. Comite European de Normalisation (CEN), Eurocode 2: Design of Concrete Structures-Part 1-1 General Rules and Rules for Buildings, prEN 1992-1, 2002, 211 pp.
  5. American Association of State Highway and Transportation Officials, AASHTO LRFD Bridge Design Specifications, Third Edition, AASHTO, Washington, DC, 2007, 1450 pp.
  6. CSA Committee A23.3-04, Design of Concrete Structures, Canadian Standards Association, 2004, 232 pp.
  7. 한국콘크리트학회, 콘크리트구조설계기준 해설, 기문당, 2007, 523 pp.
  8. Lin, T. Y., "Tentative Recommendations for Prestressed Concrete," ACI Journal, Proceedings, Part 2 Detroit, MI, 1958, pp. 1232-1233.
  9. Siess, C. P., "Research, Building Codes and Engineering Practice," ACI Journal, Proceedings, Vol. 56, No. 11, 1960, pp. 1105-1122.
  10. 이정연, 이득행, 김강수, 황진하, 임주혁, 이진섭, "장방형 단면을 갖는 프리텐션 부재의 프리스트레스 도입시 허용 압축응력," 대한건축학회논문집(구조계), 27권, 5호, 2011, pp. 57-67.
  11. Noppakunwijai, P., Tadros, M. K., Ma, J. Z., and Mast, R. F., "Strength Design of Pretensioned Flexural Concrete Members at Prestress Transfer," PCI Journal, Vol. 46, No. 1, 2001, pp. 34-52.
  12. Noppakunwijai, P., Tadros, M. K., and Sun, C., "Application of the Strength Design Method for Flexural Members at Prestress Tranfer," PCI Journal, Vol. 48, No. 5, 2003, pp. 1-14.
  13. Castro, A., Kreger, M., Bayrak, O., Breen, J. E., and Wood, S., "Allowable Design Release Stresses for Pretensioned Concrete Beams," Report No. FHWA/TX-04/0-4086-2, Center for Transportation Research, University of Texas, Austin TX, 2004, 127 pp.
  14. Hale, W. M. and Russell, B. W., "Effect of Allowable Compressive Stress at Release on Prestress Loss and on the Performance of Precast, Prestressed Concrete Bridge Girders," PCI Journal, Vol. 51, No. 2, 2006, pp. 14-25.
  15. Dolan, C. W. and Krohn, J. J., "A Case for Increasing the Allowable Compressive Release Stress for Prestressed Concrete," PCI Journal, Vol. 52, No. 1, 2007, pp. 2-5.
  16. Texas Department of Transportation, Bridge Division Standard Drawings, 2005 (www.dot.state.tx.us).
  17. PCI Industry Hand Book Committee, PCI Design Hand Book, Fifth ed., Precast and Prestressed Concrete Institute, 624 pp.
  18. ACI Committee 318, Building Code Requirements for Reinforced Concrete(ACI 318-89), American Concrete Institute, Farmington Hills, MI, 1989, 144 pp.