DOI QR코드

DOI QR Code

Fragility Contour Method for the Seismic Performance Assessment of Generic Structures

지진 취약성 등고선을 이용한 내진성능 평가 방법

  • 정성훈 (인하대학교 건축공학과) ;
  • 이기학 (세종대학교 건축공학과) ;
  • 이도형 (배재대학교 건설환경철도공학과)
  • Received : 2011.01.31
  • Accepted : 2011.04.14
  • Published : 2011.06.30

Abstract

Extensive computer simulations to account for the randomness in the process of seismic demand estimation have been a serious obstacle to the adoption of probabilistic performance assessments for the decision of applying seismic intervention schemes. In this study, a method for rapid fragility assessments based on a response database and the fragility contour method are presented. By the comparison of response contours in different formats, it is shown that representing maximum responses in ductility demand is better for the investigation of the effect of structural parameter changes on seismic demands than representations in absolute values. The presented fragility contour enables designers to practically investigate the probabilistic performance level of every possible retrofit option in a convenient manner using visualized data sets. This example demonstrates the extreme efficiency of the proposed approach in performing fragility assessments and successful application to the seismic retrofit strategies based on limit state probabilities.

기존의 확률적 지진 취약성 분석은 그 중요성에도 불구하고 시간과 노력의 과도한 소요로 인하여 내진 성능 평가에 사용되기에 많은 제약이 따라왔다. 본 연구에서는 이를 극복하기 위해 획기적 수준의 신속성과 확장성을 갖춘 지진 취약성 분석 체계와 이를 실용화 하기위한 취약성 등고선을 개발하였다. 응답 데이터베이스를 활용하여 광범위한 구조물의 최대 응답을 즉각적으로 구하고 이를 바탕으로 구조물의 주기와 강성에 따른 한계상태확률의 변화를 한눈에 파악할 수 있는 취약성 등고선을 도출하였다. 최대응답 등고선의 도출과 비교를 통해서 최대응답의 분포는 연성도 요구치로 나타내는 것이 변위의 절대값으로 표현하는 것보다 안정적인 예측곡선을 보여 주며, 구조물의 응답특성변수인 주기와 강도비가 최대응답에 미치는 영향을 분석하는데도 유리함을 확인하였다. 연성도를 내진성능 평가의 기준으로 사용하기 위해서 내진설계기준에서 한계상태변위로서 제시되는 층간변위비와 연성도 요구치 사이의 상호 변환 관계를 정의하였다. 예제 구조물의 내진보강 전략 수립에 대한 논의를 통해서 신뢰성 이론에 기반 한 내진 보강과 설계에 취약성 등고선이 매우 유용하게 활용될 수 있음을 보여주었다.

Keywords

References

  1. Rossetto, T., and Elnashai, A.S., "Derivation of vulnerability functions for European-type RC structures based on observational data," Engineering Structures, Vol. 25, No. 10, 1241-1263, 2003. https://doi.org/10.1016/S0141-0296(03)00060-9
  2. ATC-13, Earthquake Damage Evaluation Data for California, Applied Technology Council, Redwood City, California, 1985.
  3. HAZUS-National Institute of Building Sciences, Development of a Standardized Earthquake Loss Estimation Methodology, FEMA, Washington, DC, 1995.
  4. Singhal, A., and Kiremidjian, A.S., "Bayesian updating of fragilities with application to RC frames," Journal of Structural Engineering, ASCE, Vol. 124, No. 8, 922-929, 1998. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:8(922)
  5. Chryssanthopoulos, M.K., Dymiotis, C., and Kappos, A.J., "Probabilistic evaluation of behaviour factors in EC8-designed R/C frames," Engineering Structures, Vol. 22, No. 8, 1028-1041, 2000. https://doi.org/10.1016/S0141-0296(99)00026-7
  6. Celik, O.C., and Ellingwood, B.R., "Seismic risk assessment of gravity load designed reinforced concrete frames subjected to Mid-America ground motions," Journal of Structural Engineering, ASCE, Vol. 135, No. 4, 414-424, 2009. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:4(414)
  7. Jeong, S.H., and Elnashai, A.S., "Probabilistic Fragility Analysis Parameterized by Fundamental Response Quantities," Engineering Structures, Vol. 29, No. 6, 1238-1251, 2007. https://doi.org/10.1016/j.engstruct.2006.06.026
  8. Calvi, G.M., "A displacement-based approach for vulnerability evaluation of classes of buildings," Journal of Earthquake Engineering, Vol. 3, No. 3, 411-438, 1999. https://doi.org/10.1142/S136324699900017X
  9. Shinozuka, M., Feng, M.Q., Kim, H.K., and Kim, S.H., "Nonlinear static procedure for fragility curve development," Journal of Engineering Mechanics, ASCE, Vol. 126, No. 12, 1287-1295, 2000. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1287)
  10. ATC-14, Evaluating the Seismic Resistance of Existing Buildings, Applied Technology Council, Redwood City, California, 1987.
  11. ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings, Applied Technology Council, Redwood City, California, 1996.
  12. FEMA-273. NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Washington, DC, 1997.
  13. Saiidi, M., and Sozen, M.A., "Simple nonlinear seismic analysis of RC structures," Journal of Structural Engineering, ASCE, Vol. 107, No. 5, 937-953, 1981.
  14. Fajfar, P., and Fischinger, M., "N2 - A method for non-linear seismic analysis of regular structures," Proceedings from the 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan, 111-116, 1988.
  15. Qi, X., and Moehle, J.P., "Displacement design approach for reinforced concrete structures subjected to earthquakes," EERC Report 91/02, Earthquake Engineering Research Center, Berkeley, California, 1991.
  16. ASCE, Seismic Rehabilitation of Existing Buildings (ASCE/SEI 41-06), American Society of Civil Engineers, Reston, Virginia, 2007.
  17. SEAOC Vision 2000 Committee, Performance Based Seismic Engineering of Buildings, Structural Engineers Association of California(SEAOC), Sacramento, CA, 1995.
  18. Wen, Y.K., Ellingwood, B.R., and Bracci, J., "Vulnerability function framework for consequence-based engineering," MAE Report 04-04, Mid-America Earthquake Center, University of Illinois at Urbana-Champaign, 2004.
  19. Newmark, N.M., and Hall, W.J., Earthquake Spectra and Design, Earthquake Engineering Research Institute, Oakland, CA, 1982.
  20. 대한건축학회, 건축구조설계기준 - KBC 2009.
  21. Rix G.J., and Fernandez, J.A., Probabilistic ground motions for selected cities in the Upper Mississippi Embayment, Georgia Institute of Technology, Atlanta.
  22. Foutch, D. A., State-of-the-art report on performance prediction and evaluation of moment-resisting steel frame structures, Report No. FEMA-355f, Federal Emergency Management Agency, Washington, D.C, 2000.
  23. Leyendecker, E.V., Hunt, R.J., Frankel, A.D., and Rukstales, K.S., "Development of maximum considered earthquake ground motion maps," Earthquake Spectra, Vol. 16, No. 1, 21-40, 2000. https://doi.org/10.1193/1.1586081
  24. Bracci, J.M., Reinhorn, A.M., and Mander, J.B., Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part I-Design and Properties of a One-Third Scale Model Structure, Technical Report NCEER-92-0027, National Center for Earthquake Engineering Research, State University of New York at Buffalo, New York, 1992.