DOI QR코드

DOI QR Code

Inhibition of Invasion and Capillary-like Tube Formation by Retrohydroxamate-based MMP Inhibitors

  • Choi, Seung-Su (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Ji, Ae-Ri (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Yu, Seung-Woo (Research Laboratories, ILDONG Pharmaceuticals Co., Ltd.) ;
  • Cho, Bong-Hwan (Research Laboratories, ILDONG Pharmaceuticals Co., Ltd.) ;
  • Park, Jung-Dae (Department of Chemistry, POSTECH) ;
  • Park, Jun-Hyoung (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Lee, Hyun-Soo (Department of Chemistry, Sogang University) ;
  • Ryu, Seong-Eon (Department of Bio-engineering, College of Engineering, Hanyang University) ;
  • Kim, Dong-Han (Department of Chemistry, POSTECH) ;
  • Kang, Jae-Hoon (Research Laboratories, ILDONG Pharmaceuticals Co., Ltd.) ;
  • Lee, Seung-Taek (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
  • Received : 2011.02.07
  • Accepted : 2011.04.26
  • Published : 2011.06.20

Abstract

Matrix metalloproteinases (MMPs), a family of zinc-containing endopeptidases, participate in many normal processes such as embryonic development and wound repair, and in many pathological situations such as cancer, atherosclerosis, and arthritis. Peptidomimetic MMP inhibitors were designed and synthesized with N-formylhydroxylamine (retrohydroxamate) as a zinc-binding group and various side chains on the ${\alpha}$, P1', and P2' positions. Using in vitro MMP assays with purified MMPs (MMP-1, MMP-2, MMP-3, MMP-9, and MMP-14) and fluorogenic peptide substrates, it was found that compounds 2d and 2g selectively inhibit gelatinases (MMP-2 and MMP-9) and interstitial collagenase (MMP-1). They also inhibited the chemo-invasion of fibrosarcoma HT-1080 cells and tube formation of human umbilical vascular endothelial cells in a dose-dependent manner. Our results suggest that retrohydroxamate-based MMP inhibitors, especially compounds 2d and 2g, have the potential to be used as therapeutic drugs for cancer and other MMP-related diseases.

Keywords

References

  1. Kessenbrock, K.; Plaks, V.; Werb, Z. Cell 2010, 141, 52. https://doi.org/10.1016/j.cell.2010.03.015
  2. Tallant, C.; Marrero, A.; Gomis-Ruth, F. X. Biochim. Biophys. Acta 2010, 1803, 20. https://doi.org/10.1016/j.bbamcr.2009.04.003
  3. Brown, P. D. Angiogenesis 1998, 1, 142.
  4. Raffetto, J. D.; Khalil, R. A. Biochem. Pharmacol. 2008, 75, 346. https://doi.org/10.1016/j.bcp.2007.07.004
  5. Coussens, L. M.; Fingleton, B.; Matrisian, L. M. Science 2002, 295, 2387. https://doi.org/10.1126/science.1067100
  6. Aureli, L.; Gioia, M.; Cerbara, I.; Monaco, S.; Fasciglione, G. F.; Marini, S.; Ascenzi, P.; Topai, A.; Coletta, M. Curr. Med. Chem. 2008, 15, 2192. https://doi.org/10.2174/092986708785747490
  7. Peterson, J. T. Cardiovasc. Res. 2006, 69, 677. https://doi.org/10.1016/j.cardiores.2005.11.032
  8. Michaelides, M. R.; Dellaria, J. F.; Gong, J.; Holms, J. H.; Bouska, J. J.; Stacey, J.; Wada, C. K.; Heyman, H. R.; Curtin, M. L.; Guo, Y.; Goodfellow, C. L.; Elmore, I. B.; Albert, D. H.; Magoc, T. J.; Marcotte, P. A.; Morgan, D. W.; Davidsen, S. K. Bioorg. Med. Chem. Lett. 2001, 11, 1553. https://doi.org/10.1016/S0960-894X(01)00031-2
  9. Koo, H. M.; Kim, J. H.; Hwang, I. K.; Lee, S. J.; Kim, T. H.; Rhee, K. H.; Lee, S.-T. Mol. Cells 2002, 13, 118.
  10. Kim, S. Y.; Park, S. M.; Lee, S. T. Biochem. Biophys. Res. Commun. 2006, 339, 47. https://doi.org/10.1016/j.bbrc.2005.10.182
  11. Jo, Y.; Yoon, D.-W.; Kim, M.-Y.; Lee, Y.-J.; Kim, H.-J.; Lee, S.-T. J. Biochem. Mol. Biol. 1999, 32, 60.
  12. Park, J. H.; Park, S.-M.; Park, S.-H.; Cho, K.-H., Lee, S.-T. Proteomics 2008, 8, 2926. https://doi.org/10.1002/pmic.200700487
  13. Park, S. M.; Hwang, I. K.; Kim, S. Y.; Lee, S. J.; Park, K.-S.; Lee, S.-T. Proteomics 2006, 6, 1192. https://doi.org/10.1002/pmic.200500402
  14. Jo, Y.; Yeon, J.; Kim, H.-J.; Lee, S.-T. Biochem. J. 2000, 345, 511. https://doi.org/10.1042/0264-6021:3450511
  15. Jaffe, E. A.; Nachman, R. L.; Becker, C. G.; Minick, C. R. J. Clin. Investig. 1973, 52, 2745. https://doi.org/10.1172/JCI107470
  16. Hansen, M. B.; Nielsen, S. E.; Berg, K. J. Immunol. Methods 1989, 119, 203. https://doi.org/10.1016/0022-1759(89)90397-9
  17. Shin, W. S.; Maeng, Y. S.; Jung, J. W.; Min, J. K.; Kwon, Y. G.; Lee, S.-T. Biochem. Biophys. Res. Commun. 2008, 371, 793. https://doi.org/10.1016/j.bbrc.2008.04.168
  18. Edmonds, M. K.; Abell, A. D. J. Org. Chem. 2001, 66, 3747. https://doi.org/10.1021/jo0016834
  19. Musso, D. L.; Andersen, M. W.; Andrews, R. C.; Austin, R.; Beaudet, E. J.; Becherer, J. D.; Bubacz, D. G.; Bickett, D. M.; Chan, J. H.; Conway, J. G.; Cowan, D. J.; Gaul, M. D.; Glennon, K. C.; Hedeen, K. M.; Lambert, M. H.; Leesnitzer, M. A; McDougald, D. L.; Mitchell, J. L.; Moss, M. L.; Rabinowitz, M. H.; Rizzolio, M. C.; Schaller, L. T.; Stanford, J. B.; Tippin, T. K.; Warner, J. R.; Whitesell, L. G.; Wiethe, R. W. Bioorg. Med. Chem. Lett. 2001, 11, 2147. https://doi.org/10.1016/S0960-894X(01)00377-8
  20. Mitsunobu, O. Synthesis 1981, 1.
  21. Strazzolini, P.; Giumanini, A. G.; Cauci, S. Tetrahedron 1990, 46, 1081. https://doi.org/10.1016/S0040-4020(01)86676-X
  22. Mook, O. R.; Frederiks, W. M.; Van Noorden, C. J. Biochim. Biophys. Acta 2004, 1705, 69.
  23. Bode, W.; Fernandez-Catalan, C.; Tschesche, H.; Grams, F.; Nagase, H.; Maskos, K. Cell. Mol. Life Sci. 1999, 55, 639. https://doi.org/10.1007/s000180050320
  24. Santos, M. A. In Drug Design of Zinc-Enzyme Inhibitors: Functional, Structural, and Disease Applications; Supuran, C. T., Winum, J.-Y., Eds.; Wiley: Hoboken, U.S.A., 2009; p 519.
  25. Botos, I.; Scapozza, L.; Zhang, D.; Liotta, L.; Meyer, E. F. Proc. Natl. Acad. Sci. USA 1996, 93, 2749. https://doi.org/10.1073/pnas.93.7.2749
  26. Liotta, L. A.; Tryggvason, K.; Garbisa, S.; Hart, I.; Foltz, C. M.; Shafie, S. Nature 1980, 284, 67. https://doi.org/10.1038/284067a0
  27. Koivunen, E.; Arap, W.; Valtanen, H.; Rainisalo, A.; Medina, O. P.; Heikkila, P.; Kantor, C.; Gahmberg, C. G.; Salo, T.; Konttinen, Y. T.; Sorsa, T.; Ruoslahti, E.; Pasqualini, R. Nat. Biotechnol. 1999, 17, 768. https://doi.org/10.1038/11703
  28. Karakiulakis, G.; Papanikolaou, C.; Jankovic, S. M.; Aletras, A.; Papakonstantinou, E.; Vretou, E.; Mirtsou-Fidani, V. Invasion Metastasis 1997, 17, 158.
  29. Jain, R. K. Science 2005, 307, 58. https://doi.org/10.1126/science.1104819
  30. Grant, D. S.; Tashiro, K.; Segui-Real, B.; Yamada, Y.; Martin, G. R.; Kleinman, H. K. Cell 1989, 58, 933. https://doi.org/10.1016/0092-8674(89)90945-8
  31. Wang, H.; Keiser, J. A. Biochem. Biophys. Res. Commun. 2000, 272, 900. https://doi.org/10.1006/bbrc.2000.2852
  32. Shirakawa, K.; Furuhata, S.; Watanabe, I.; Hayase, H.; Shimizu, A.; Ikarashi, Y. ; Yoshida, T.; Terada, M.; Hashimoto, D.; Wakasugi, H. Br. J. Cancer 2002, 87, 1454. https://doi.org/10.1038/sj.bjc.6600610

Cited by

  1. ChemInform Abstract: Inhibition of Invasion and Capillary-Like Tube Formation by Retrohydroxamate-Based MMP Inhibitors. vol.42, pp.42, 2011, https://doi.org/10.1002/chin.201142207
  2. Fisetin Inhibits Matrix Metalloproteinases and Reduces Tumor Cell Invasiveness and Endothelial Cell Tube Formation vol.65, pp.8, 2013, https://doi.org/10.1080/01635581.2013.828090