References
- Medina, C.; Santos-Martinez, M. J.; Radomski, A.; Corrigan, O. I.; Radomski, M. W. British Journal of Pharmacology 2007, 150, 552-558.
- Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Environmental Health Perspectives 2005, 113, 823-839. https://doi.org/10.1289/ehp.7339
- Lewinski, N.; Colvin, V.; Drezek, R. Small 2008, 4, 26-49. https://doi.org/10.1002/smll.200700595
- Sur, I.; Cam, D.; Kahraman, M.; Baysal, A.; Culha, M. Nanotechnology 2010, 21, 175104-175113. https://doi.org/10.1088/0957-4484/21/17/175104
- Nel, A.; Xia, T.; Madler, L.; Li, N. Science 2006, 311, 622-627. https://doi.org/10.1126/science.1114397
- Ahamed, M.; AlSalhi, M. S.; Siddiqui, M. K. J. Clinica Chimica Acta 2010, 411, 1841-1848. https://doi.org/10.1016/j.cca.2010.08.016
- AshaRani, P. V.; Mun, G. L. K.; Hande, M. P.; Valiyaveettil, S. ACS Nano 2009, 3, 279-290. https://doi.org/10.1021/nn800596w
- Cohen, M. S.; Stern, J. M.; Vanni, A. J.; Kelley, R. S.; Baumgart, E.; Field, D.; Libertino, J. A.; Summerhayes, I. C. Surgical Infections 2007, 8, 397-403. https://doi.org/10.1089/sur.2006.032
- Fu, J.; Ji, J.; Fan, D.; Shen, J. Journal of Biomedical Materials Research-Part A 2006, 79, 665-674.
- Xu, X.; Yang, Q.; Bai, J.; Lu, T.; Li, Y.; Jing, X. Journal of Nanoscience and Nanotechnology 2008, 8, 5066-5070. https://doi.org/10.1166/jnn.2008.1193
- Chaby, G.; Viseux, V.; Poulain, J. F.; De Cagny, B.; Denoeux, J. P.; Lok, C. Annales de dermatologie et de venereologie 2005, 132, 891-893. https://doi.org/10.1016/S0151-9638(05)79509-0
- Trop, M.; Novak, M.; Rodl, S.; Hellbom, B.; Kroell, W.; Goessler, W. The Journal of Trauma 2006, 60, 648-652. https://doi.org/10.1097/01.ta.0000208126.22089.b6
- Kim, S.; Choi, J. E.; Choi, J.; Chung, K. H.; Park, K.; Yi, J.; Ryu, D. Y. Toxicolgy In Vitro 2009, 23, 1076-1084. https://doi.org/10.1016/j.tiv.2009.06.001
- Martindale, J. L.; Holbrook, N. J. Journal of Cellular Physiology 2002, 192, 1-15. https://doi.org/10.1002/jcp.10119
- Thannickal, V. J.; Fanburg, B. L. American Journal of Physiology-Lung Cellular and Molecular Physiology 2000, 279, L1005-L1028. https://doi.org/10.1152/ajplung.2000.279.6.L1005
- Sies, H. Free Radical Biology & Medicine 1999, 27, 916-921. https://doi.org/10.1016/S0891-5849(99)00177-X
- Nicholson, J. K.; Connelly, J.; Lindon, J. C.; Holmes, E. Nature Reviews Drug Discovery 2002, 1, 153-161. https://doi.org/10.1038/nrd728
- Nicholson, J. K.; Lindon, J. C. Nature 2008, 455, 1054-1056. https://doi.org/10.1038/4551054a
- Kwon, B.; Kim, S.; Kim, S.; Lee, D. K.; Park, Y. J.; Kim, M. D.; Lee, J. S.; Kim, S. Forensic Science International 2011, accepted.
- Holmes, E.; Nicholls, A. W.; Lindon, J. C.; Ramos, S.; Spraul, M.; Neidig, P.; Connor, S. C.; Connelly, J.; Damment, S. J. P.; Haselden, J.; Nicholson, J. K. NMR in Biomedicine 1998, 11, 235-244. https://doi.org/10.1002/(SICI)1099-1492(199806/08)11:4/5<235::AID-NBM507>3.0.CO;2-V
- Bollarda, M. E.; Murrayb, A. J.; Clarkeb, K.; Nicholson, J. K.; Griffin, J. L. FEBS Letters 2003, 553, 73-78. https://doi.org/10.1016/S0014-5793(03)00969-4
- Waters, N. J.; Holmes, E.; Willians, A.; Waterfield, C. J.; Farrant, R. D.; Nicholson, J. K. Chemical Research in Toxicology 2001, 14, 1401-1412. https://doi.org/10.1021/tx010067f
- Lehnhardt, F. G.; Bock, C.; Rohn, G.; Ernestus, R. I.; Hoehn, M. NMR in Biomedicine 2005, 18, 371-382. https://doi.org/10.1002/nbm.968
- Piao, M. J.; Kang, K.A.; Lee, I. K.; Kim, H. S.; Kim, S.; Choi, J. Y.; Choi, J.; Hyun, J. W. Toxicology Letters 2011, 201, 92-100. https://doi.org/10.1016/j.toxlet.2010.12.010
- Habib, G. M.; Shi, Z. Z.; Lieberman, M. W. Free Radical Biology & Medicine 2007, 42, 191-201. https://doi.org/10.1016/j.freeradbiomed.2006.10.036
- Pena-Llopis, S.; Ferrando, M. D.; Pena, J. B. Aquatic Toxicology 2003, 65, 337-360. https://doi.org/10.1016/S0166-445X(03)00148-6
- Vairetti, M.; Griffini, P.; Pietrocola, G.; Richelmi, P.; Freitas, I. Free Radical Biology & Medicine 2001, 31, 954-961. https://doi.org/10.1016/S0891-5849(01)00670-0
Cited by
- Carboxymethyl Chitosan-Functionalized Magnetic Nanoparticles for Disruption of Biofilms of Staphylococcus aureus and Escherichia coli vol.51, pp.40, 2012, https://doi.org/10.1021/ie301522w
- H HR-MAS NMR Spectroscopy vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1467
- In Situ Study of the Antibacterial Activity and Mechanism of Action of Silver Nanoparticles by Surface-Enhanced Raman Spectroscopy vol.85, pp.11, 2013, https://doi.org/10.1021/ac400245j
- Chemical Basis of Interactions Between Engineered Nanoparticles and Biological Systems vol.114, pp.15, 2014, https://doi.org/10.1021/cr400295a
- Chemiluminescent Diagnostics of Free-Radical Processes in an Abiotic System and in Liver Cells in the Presence of Nanoparticles Based on Rare-Earth Elements nReVO4:Eu3+ (Re = Gd, Y, La) and CeO2 vol.81, pp.5, 2014, https://doi.org/10.1007/s10812-014-0012-9
- ) exposed to zinc and cadmium by nuclear magnetic resonance -based metabolomics vol.32, pp.2, 2016, https://doi.org/10.1080/02757540.2015.1125891
- Evaluating the effect of silver nanoparticles on testes of adult albino rats (histological, immunohistochemical and biochemical study) vol.48, pp.1, 2017, https://doi.org/10.1007/s10735-016-9701-4
- Selective drug-free cancer apoptosis by three-dimensional self-targeting magnetic nickel oxide nanomatrix vol.13, pp.19, 2018, https://doi.org/10.2217/nnm-2018-0008
- Microwave-Assisted Green Synthesis of Silver Nanoparticles Using Orange Peel Extract vol.2, pp.3, 2011, https://doi.org/10.1021/sc4003664
- Metabolomics techniques for nanotoxicity investigations vol.7, pp.12, 2011, https://doi.org/10.4155/bio.15.83
- Environmental metabolomics: Biological markers for metal toxicity vol.36, pp.18, 2011, https://doi.org/10.1002/elps.201500052
- Ultrastructural hepatocytic alterations induced by silver nanoparticle toxicity vol.40, pp.2, 2011, https://doi.org/10.3109/01913123.2016.1150377
- Uptake of nanopolystyrene particles induces distinct metabolic profiles and toxic effects in Caenorhabditis elegans vol.246, pp.None, 2019, https://doi.org/10.1016/j.envpol.2018.12.043