DOI QR코드

DOI QR Code

Characterization of the Effects of Silver Nanoparticles on Liver Cell Using HR-MAS NMR Spectroscopy

  • Kim, Si-Won (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kim, So-Sun (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Lee, Sang-Mi (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kwon, Bo-Bae (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Choi, Jin-Hee (Faculty of Environmental Engeering, University of Seoul) ;
  • Hyun, Jin-Won (School of Medicine and Applied Radiological Science Research Institute, Jeju National University) ;
  • Kim, Suhk-Mann (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • Received : 2011.04.12
  • Accepted : 2011.04.25
  • Published : 2011.06.20

Abstract

AgNPs (silver nanoparticles) has been widely used for the commercial products, which have antimicrobial agent, medical devices, food industry and cosmetics. Despite, AgNPs have been reported as toxic to the mammalian cell, lung, liver, brain and other organs and many researchers have investigated the toxicity of AgNPs. In this study, we investigated toxicity of the AgNPs to the liver cell using metabolomics based on HRMAS NMR (High Resolution Magic Angle Spinning Nuclear Magnetic Resonance) technics, which could apply to the intact tissues or cells, to avoid the sample destruction. Target profiling and multivariative statistical analysis were performed to analyze the 1D $^1H$ spectrum. The results show that the concentrations of many metabolites were affected by the AgNPs in the liver cell. The concentrations of glutathione (GSH), lactate, taurine, and glycine were decreased and most of amino acids, choline analogues, and pyruvate were increased by the AgNPs. Moreover, the levels of the metabolites were recovered upto similar level of metabolites in the normal cell by the pre-treatment of NAC, external antioxidant. The results suggest that the depletion of the GSH by the AgNPs might induce the conversion of lactate and taurine to the pyruvate.

Keywords

References

  1. Medina, C.; Santos-Martinez, M. J.; Radomski, A.; Corrigan, O. I.; Radomski, M. W. British Journal of Pharmacology 2007, 150, 552-558.
  2. Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Environmental Health Perspectives 2005, 113, 823-839. https://doi.org/10.1289/ehp.7339
  3. Lewinski, N.; Colvin, V.; Drezek, R. Small 2008, 4, 26-49. https://doi.org/10.1002/smll.200700595
  4. Sur, I.; Cam, D.; Kahraman, M.; Baysal, A.; Culha, M. Nanotechnology 2010, 21, 175104-175113. https://doi.org/10.1088/0957-4484/21/17/175104
  5. Nel, A.; Xia, T.; Madler, L.; Li, N. Science 2006, 311, 622-627. https://doi.org/10.1126/science.1114397
  6. Ahamed, M.; AlSalhi, M. S.; Siddiqui, M. K. J. Clinica Chimica Acta 2010, 411, 1841-1848. https://doi.org/10.1016/j.cca.2010.08.016
  7. AshaRani, P. V.; Mun, G. L. K.; Hande, M. P.; Valiyaveettil, S. ACS Nano 2009, 3, 279-290. https://doi.org/10.1021/nn800596w
  8. Cohen, M. S.; Stern, J. M.; Vanni, A. J.; Kelley, R. S.; Baumgart, E.; Field, D.; Libertino, J. A.; Summerhayes, I. C. Surgical Infections 2007, 8, 397-403. https://doi.org/10.1089/sur.2006.032
  9. Fu, J.; Ji, J.; Fan, D.; Shen, J. Journal of Biomedical Materials Research-Part A 2006, 79, 665-674.
  10. Xu, X.; Yang, Q.; Bai, J.; Lu, T.; Li, Y.; Jing, X. Journal of Nanoscience and Nanotechnology 2008, 8, 5066-5070. https://doi.org/10.1166/jnn.2008.1193
  11. Chaby, G.; Viseux, V.; Poulain, J. F.; De Cagny, B.; Denoeux, J. P.; Lok, C. Annales de dermatologie et de venereologie 2005, 132, 891-893. https://doi.org/10.1016/S0151-9638(05)79509-0
  12. Trop, M.; Novak, M.; Rodl, S.; Hellbom, B.; Kroell, W.; Goessler, W. The Journal of Trauma 2006, 60, 648-652. https://doi.org/10.1097/01.ta.0000208126.22089.b6
  13. Kim, S.; Choi, J. E.; Choi, J.; Chung, K. H.; Park, K.; Yi, J.; Ryu, D. Y. Toxicolgy In Vitro 2009, 23, 1076-1084. https://doi.org/10.1016/j.tiv.2009.06.001
  14. Martindale, J. L.; Holbrook, N. J. Journal of Cellular Physiology 2002, 192, 1-15. https://doi.org/10.1002/jcp.10119
  15. Thannickal, V. J.; Fanburg, B. L. American Journal of Physiology-Lung Cellular and Molecular Physiology 2000, 279, L1005-L1028. https://doi.org/10.1152/ajplung.2000.279.6.L1005
  16. Sies, H. Free Radical Biology & Medicine 1999, 27, 916-921. https://doi.org/10.1016/S0891-5849(99)00177-X
  17. Nicholson, J. K.; Connelly, J.; Lindon, J. C.; Holmes, E. Nature Reviews Drug Discovery 2002, 1, 153-161. https://doi.org/10.1038/nrd728
  18. Nicholson, J. K.; Lindon, J. C. Nature 2008, 455, 1054-1056. https://doi.org/10.1038/4551054a
  19. Kwon, B.; Kim, S.; Kim, S.; Lee, D. K.; Park, Y. J.; Kim, M. D.; Lee, J. S.; Kim, S. Forensic Science International 2011, accepted.
  20. Holmes, E.; Nicholls, A. W.; Lindon, J. C.; Ramos, S.; Spraul, M.; Neidig, P.; Connor, S. C.; Connelly, J.; Damment, S. J. P.; Haselden, J.; Nicholson, J. K. NMR in Biomedicine 1998, 11, 235-244. https://doi.org/10.1002/(SICI)1099-1492(199806/08)11:4/5<235::AID-NBM507>3.0.CO;2-V
  21. Bollarda, M. E.; Murrayb, A. J.; Clarkeb, K.; Nicholson, J. K.; Griffin, J. L. FEBS Letters 2003, 553, 73-78. https://doi.org/10.1016/S0014-5793(03)00969-4
  22. Waters, N. J.; Holmes, E.; Willians, A.; Waterfield, C. J.; Farrant, R. D.; Nicholson, J. K. Chemical Research in Toxicology 2001, 14, 1401-1412. https://doi.org/10.1021/tx010067f
  23. Lehnhardt, F. G.; Bock, C.; Rohn, G.; Ernestus, R. I.; Hoehn, M. NMR in Biomedicine 2005, 18, 371-382. https://doi.org/10.1002/nbm.968
  24. Piao, M. J.; Kang, K.A.; Lee, I. K.; Kim, H. S.; Kim, S.; Choi, J. Y.; Choi, J.; Hyun, J. W. Toxicology Letters 2011, 201, 92-100. https://doi.org/10.1016/j.toxlet.2010.12.010
  25. Habib, G. M.; Shi, Z. Z.; Lieberman, M. W. Free Radical Biology & Medicine 2007, 42, 191-201. https://doi.org/10.1016/j.freeradbiomed.2006.10.036
  26. Pena-Llopis, S.; Ferrando, M. D.; Pena, J. B. Aquatic Toxicology 2003, 65, 337-360. https://doi.org/10.1016/S0166-445X(03)00148-6
  27. Vairetti, M.; Griffini, P.; Pietrocola, G.; Richelmi, P.; Freitas, I. Free Radical Biology & Medicine 2001, 31, 954-961. https://doi.org/10.1016/S0891-5849(01)00670-0

Cited by

  1. Carboxymethyl Chitosan-Functionalized Magnetic Nanoparticles for Disruption of Biofilms of Staphylococcus aureus and Escherichia coli vol.51, pp.40, 2012, https://doi.org/10.1021/ie301522w
  2. H HR-MAS NMR Spectroscopy vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1467
  3. In Situ Study of the Antibacterial Activity and Mechanism of Action of Silver Nanoparticles by Surface-Enhanced Raman Spectroscopy vol.85, pp.11, 2013, https://doi.org/10.1021/ac400245j
  4. Chemical Basis of Interactions Between Engineered Nanoparticles and Biological Systems vol.114, pp.15, 2014, https://doi.org/10.1021/cr400295a
  5. Chemiluminescent Diagnostics of Free-Radical Processes in an Abiotic System and in Liver Cells in the Presence of Nanoparticles Based on Rare-Earth Elements nReVO4:Eu3+ (Re = Gd, Y, La) and CeO2 vol.81, pp.5, 2014, https://doi.org/10.1007/s10812-014-0012-9
  6. ) exposed to zinc and cadmium by nuclear magnetic resonance -based metabolomics vol.32, pp.2, 2016, https://doi.org/10.1080/02757540.2015.1125891
  7. Evaluating the effect of silver nanoparticles on testes of adult albino rats (histological, immunohistochemical and biochemical study) vol.48, pp.1, 2017, https://doi.org/10.1007/s10735-016-9701-4
  8. Selective drug-free cancer apoptosis by three-dimensional self-targeting magnetic nickel oxide nanomatrix vol.13, pp.19, 2018, https://doi.org/10.2217/nnm-2018-0008
  9. Microwave-Assisted Green Synthesis of Silver Nanoparticles Using Orange Peel Extract vol.2, pp.3, 2011, https://doi.org/10.1021/sc4003664
  10. Metabolomics techniques for nanotoxicity investigations vol.7, pp.12, 2011, https://doi.org/10.4155/bio.15.83
  11. Environmental metabolomics: Biological markers for metal toxicity vol.36, pp.18, 2011, https://doi.org/10.1002/elps.201500052
  12. Ultrastructural hepatocytic alterations induced by silver nanoparticle toxicity vol.40, pp.2, 2011, https://doi.org/10.3109/01913123.2016.1150377
  13. Uptake of nanopolystyrene particles induces distinct metabolic profiles and toxic effects in Caenorhabditis elegans vol.246, pp.None, 2019, https://doi.org/10.1016/j.envpol.2018.12.043