DOI QR코드

DOI QR Code

mPW1PW91 Calculated Structures and IR Spectra of Thiacalix[4]biscrown-5 Complexed with Alkali Metal Ions

  • 투고 : 2011.01.10
  • 심사 : 2011.02.21
  • 발행 : 2011.05.20

초록

The molecular structures of thiacalix[4]biscrown-5 (1) and p-tert-butylthiacalix[4]biscrown-5 (2) and their alkali-metal-ion complexes were optimized using the DFT BLYP/6-31G(d) and mPW1PW91/6-31G(d,p) (hybrid HF-DF) calculations. The total electronic energies, the normal vibrational modes, and the Gibbs free energies of the mono- and di-topic complexes of each host with the sodium and potassium ions were analyzed. The $K^+$-complexes exhibited relatively stronger binding efficiencies than $Na^+$-complexes for both the monoand di-topic complexes of 1 and 2 comparing the efficiencies of the sodium and potassium complexes with an anisole and phenol. The mPW1PW91/6-31G(d,p) calculated distances between the oxygen atoms and the alkali metal ions were reported in the alkali-metal-ion complexes ($1{\cdot}Na^+$, $1{\cdot}2Na^+$, $1{\cdot}K^+$, $1{\cdot}2K^+$, $2{\cdot}Na^+$, $2{\cdot}Na^+$, $2{\cdot}K^+$, $2{\cdot}2K^+$). The BLYP/6-31G(d) calculated IR spectra of the host 1 and its mono-topic alkali-metal-ion complexes are compared.

키워드

참고문헌

  1. Kumagai, H.; Hasegawa, M.; Miyanari, S.; Sugawa, Y.; Sato, Y.; Hori, T.; Ueda, S.; Kamiyama, H.; Miyano, S. Tetrahedron Lett. 1997, 38, 3971. https://doi.org/10.1016/S0040-4039(97)00792-2
  2. Shokova, E. A.; Kovalev, V. V. Russ. J. Org. Chem. 2003, 39, 1.
  3. Lhotak, P. Eur. J. Org. Chem. 2004, 1675.
  4. Kim, T. H.; Lee, J. K.; Bok, J. H.; Kim, J. S.; Kim, H. Electrochim. Acta 2004, 49, 3759. https://doi.org/10.1016/j.electacta.2004.02.049
  5. Zlatuskova, P.; Stibor, I.; Tkadlecova, M.; Lhotak, P. Tetrahedron 2004, 60, 11383. https://doi.org/10.1016/j.tet.2004.09.088
  6. Appelhans, D.; Stastny, V.; Komber, H.; Voigt, D.; Lhotak, P.; Stibor, I. Tetrahedron Lett. 2004, 45, 7145. https://doi.org/10.1016/j.tetlet.2004.07.085
  7. Iki, N.; Kabuto, C.; Fukushima, T.; Kumagai, H.; Takeya, H.; Miyanari, S.; Miyashi, T.; Miyano, S. Tetrahedron 2000, 56, 1437. https://doi.org/10.1016/S0040-4020(00)00030-2
  8. Akdas, H.; Bringel, L.; Graf, E.; Hosseini, M. W.; Mislin, G.; Pansanel, J.; De Cian, A.; Fischer, J. Tetrahedron Lett. 1998, 39, 2311. https://doi.org/10.1016/S0040-4039(98)00067-7
  9. Morohashi, N.; Iki, N.; Sugawara, A.; Miyano, S. Tetrahedron 2001, 57, 5557. https://doi.org/10.1016/S0040-4020(01)00482-3
  10. Bernardino, R. J.; Costa Cabral, B. J. J. Mol. Struct. (Theochem) 2001, 549, 253. https://doi.org/10.1016/S0166-1280(01)00521-8
  11. Bilyk, A.; Hall, A. K.; Harrowfield, J. M.; Hosseini, M. W.; Skelton, B. W.; White, A. H. Inorg. Chem. 2001, 40, 672. https://doi.org/10.1021/ic001008c
  12. Iki, N.; Miyano, S. J. Inclusion Phenom. 2001, 41, 99. https://doi.org/10.1023/A:1014406709512
  13. Matsumiya, H.; Terazono, Y.; Iki, N.; Miyano, S. J. Chem. Soc., Perkin Trans. 2 2002, 1166.
  14. Suwattanamala, A.; Magalhaes, A. L.; Gomes, J. A. N. F. J. Phys. Chem. A 2005, 109, 10742. https://doi.org/10.1021/jp054338x
  15. Suwattanamala, A.; Magalhaes, A. L.; Gomes, J. A. N. F. Chem. Phys. Lett. 2004, 385, 368. https://doi.org/10.1016/j.cplett.2004.01.008
  16. Kim, K.; Choe, J.-I. J. Korean Chem. Soc. 2009, 53, 521. https://doi.org/10.5012/jkcs.2009.53.5.521
  17. Mandolini, L., Ungaro, R., Eds.; Calixarenes in Action; World Scientific Publishers Co.: Singapore, 2007.
  18. Gutsche, C. D. Calixarenes Revisited; Royal Society of Chemistry: Cambridge, 1998.
  19. Calixarenes' 50th Anni Versary; Vicens, J., Asfari, Z., Harrowfield, J. M., Eds.; Kluwer: Dordrecht, 1995.
  20. Sone, T.; Ohba, Y.; Moriya, K.; Kumada, H.; Ito, K. Tetrahedron 1997, 53, 10689. https://doi.org/10.1016/S0040-4020(97)00700-X
  21. Iki, N.; Kumagai, H.; Morohashi, N.; Ejima, K.; Hasegawa, M.; Miyanari, S.; Miyano, S. Tetrahedron Lett. 1998, 39, 7559. https://doi.org/10.1016/S0040-4039(98)01645-1
  22. Iki, N.; Narumi, F.; Fujimoto, T.; Morohashi, N.; Miyano, S. J. Chem. Soc., Perkin Trans. 2 1998, 2745.
  23. Lamartine, R.; Bavoux, C.; Vocanson, F.; Martin, A.; Senlis, G.; Perrin, M. Tetrahedron Lett. 2001, 42, 1021. https://doi.org/10.1016/S0040-4039(00)02131-6
  24. Morohashi, N.; Narumi, F.; Iki, N.; Hattori, T.; Miyano, S. Chem. Rev. 2006, 106, 5291. https://doi.org/10.1021/cr050565j
  25. van Leeuwen, F. W. B.; Beijleveld, H.; Kooijman, H.; Spek, A. L.; Verboom, W.; Reinhoudt, D. N. J. Org. Chem. 2004, 69, 3928. https://doi.org/10.1021/jo0401220
  26. Csokai, V.; Grun, A.; Parlagh, G.; Bitter, I. Tetrahedron Lett. 2002, 43, 7627. https://doi.org/10.1016/S0040-4039(02)01594-0
  27. Lamare, V.; Dozol, J. F.; Thuery, P.; Nierlich, M.; Asfari, Z.; Vicens, J. J. Chem. Soc., Perkin Trans. 2 2001, 1920.
  28. Grun, A.; Csokai, V.; Parlagh, G.; Bitter, I. Tetrahedron Lett. 2002, 43, 4153. https://doi.org/10.1016/S0040-4039(02)00764-5
  29. Lee, J. K.; Kim, S. K.; Bartsch, R. A.; Vicens, J.; Miyano, S.; Kim, J. S. J. Org. Chem. 2003, 68, 6720. https://doi.org/10.1021/jo034666y
  30. Hong, J.; Lee, C.; Ham, S. Bull. Korean Chem. Soc. 2010, 31, 453. https://doi.org/10.5012/bkcs.2010.31.02.453
  31. HyperChem Release 7.5, Hypercube, Inc.: Waterloo, Ontario, Canada, 2002.
  32. Choe, J.-I.; Kim, K.; Chang, S.-K. Bull. Korean Chem. Soc. 2000, 21, 465.
  33. Exploring Chemistry with Electronic Structure Methods, 2nd ed.; Foresman, J. B., Frisch, A., Eds.; Gaussian Inc.: Pittsburgh, PA, 1996; p 63
  34. Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664. https://doi.org/10.1063/1.475428
  35. Zhao, Y.; Tishchenko, O.; Truhlar, D. G. J. Phys. Chem. B 2005, 109, 19046. https://doi.org/10.1021/jp0534434
  36. Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 4811. https://doi.org/10.1021/jp000497z
  37. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT, 2004.
  38. Nicholas, J. B.; Hay, B. P. J. Phys. Chem. A 1999, 103, 9815. https://doi.org/10.1021/jp990570p
  39. Bernardino, R. J.; Cabral, C. Supramol. Chem. 2002, 14, 57. https://doi.org/10.1080/10610270290006574
  40. Chem3D, Version 7.0, Cambridge Soft, Cambridge, MA, U.S.A., 2001.
  41. Lee, S. J.; Chung, H. Y.; Kim, K. S. Bull. Korean Chem. Soc. 2004, 25, 1061. https://doi.org/10.5012/bkcs.2004.25.7.1061
  42. Choi, H. S.; Suh, S. B.; Cho, S. J.; Kim, K. S. Proc. Natl. Acad. Sci. 1998, 95, 12094. https://doi.org/10.1073/pnas.95.21.12094
  43. Marcias, A. T.; Norton, J. E.; Evanseck, J. D. J. Amer. Chem. Soc. 2003, 125, 2351. https://doi.org/10.1021/ja0285971
  44. Kim, D.; Hu, S.; Tarakeshwar, P.; Kim, K. S.; Lisy, J. M. J. Phys. Chem. A 2003, 107, 1228. https://doi.org/10.1021/jp0224214
  45. Kabuto, C.; Higuchi, Y.; Niimi, T.; Hamada, F.; Iki, N.; Morohashi, N.; Miyano, S. J. Inclusion Phenom. Macrocyclic Chem. 2002, 42, 89. https://doi.org/10.1023/A:1014558517301
  46. Himl, M.; Pojarova, M.; Stibor, I.; Sykora, J.; Lhotak, P. Tetrahedron Lett. 2005, 46, 461. https://doi.org/10.1016/j.tetlet.2004.11.077
  47. Dvorakova, H.; Lang, J.; Vlach, J.; Sykora, J.; Cajan, M.; Himl, M.; Pojarova, M.; Stibor, I.; Lhotak, P. J. Org. Chem. 2007, 72, 7157. https://doi.org/10.1021/jo070927i

피인용 문헌

  1. Thiacalix[4]arene-Based Three-Dimensional Coordination Polymers Incorporating Neutral Bridging Coligands vol.11, pp.9, 2011, https://doi.org/10.1021/cg2006315
  2. vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1449
  3. Probing the selective separation of potassium ion from sodium ion with cyclopentadienyl anion as receptor: a computational study vol.21, pp.8, 2015, https://doi.org/10.1007/s00894-015-2767-1
  4. Exploiting hydrogen bonding interactions to probe smaller linear and cyclic diamines binding to G-quadruplexes: a DFT and molecular dynamics study vol.19, pp.18, 2017, https://doi.org/10.1039/C7CP00472A
  5. Effect of conformation, flexibility and intramolecular interaction on ion selectivity of calix[4]arene-based anion sensors: experimental and computational studies vol.29, pp.8, 2017, https://doi.org/10.1080/10610278.2017.1301450
  6. Effect of Crown Ring Size and Upper Moiety on the Extraction of s-Block Metals by Ionizable Calixcrown Nano-baskets vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.3979
  7. Metal ion shuttling mechanism through thiacalix[4]crown: a computational study vol.53, pp.15, 2011, https://doi.org/10.1016/j.tetlet.2012.02.036
  8. Isostructural Heteronuclear (K+/M2+: M = Ni, Co, and Zn) One-Dimensional Coordination Polymers of Thiacalix[4]arene Tetraacetate vol.35, pp.1, 2011, https://doi.org/10.5012/bkcs.2014.35.1.289
  9. Thiacalix[4]‐bis‐crown with Hard Cavities and Soft Bridges Exhibiting Endocyclic Potassium(I) Complexes and Exocyclic Silver(I) Coordination Polymers vol.2018, pp.31, 2011, https://doi.org/10.1002/ejic.201800719