DOI QR코드

DOI QR Code

Synthesis of CdSe-TiO2 Photocatalyst and Their Enhanced Photocatalytic Activities under UV and Visible Light

  • Lim, Chang-Sung (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Chen, Ming-Liang (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2011.02.21
  • Accepted : 2011.03.31
  • Published : 2011.05.20

Abstract

In this study, CdSe-$TiO_2$ photocatalyst were synthesized by a facile solvothermal method and characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and UV-vis diffuse reflectance spectrophotometer. The photocatalytic activity was investigated by degrading methylene blue (MB) in aqueous solution under irradiation of UV light as well as visible light. The absorbance of degraded MB solution was determined by UV-vis spectrophotometer. The results revealed that the CdSe-$TiO_2$ photocatalyst exhibited much higher photocatalytic activity than $TiO_2$ both under irradiation of UV light as well as visible light.

Keywords

References

  1. Linsebigler, A. L.; Lu, G.; Yates, J. T., Jr. Chem. Rev. 1995, 95, 735. https://doi.org/10.1021/cr00035a013
  2. Serpone, N. Solar Energy Mater. Solar Cells 1995, 38, 369. https://doi.org/10.1016/0927-0248(94)00230-4
  3. Kawasaki, K.; Yamazaki, D.; Kinoshita, A.; Hirayama, H.; Tsutsui, K.; Aoyagi, Y. Appl. Phys. Lett. 2001, 79, 2243. https://doi.org/10.1063/1.1405422
  4. Nielsen, T. R.; Gartner, P.; Jahnke, F. Phys. Rev. B 2004, 69, 235314. https://doi.org/10.1103/PhysRevB.69.235314
  5. Todaro, M. T.; De Giorgi, M.; Tasco, V.; De Vittorio, M.; Cingolani, R.; Passaseo, A. Appl. Phys. Lett. 2004, 84, 2482. https://doi.org/10.1063/1.1687979
  6. Ye, Z.; Campbell, J. C.; Chen, Z.; Kim, E. T.; Madhukar, A. J. Appl. Phys. 2002, 92, 7462. https://doi.org/10.1063/1.1517750
  7. Peter, L. M.; Riley, D. J.; Tull, E. J.; Wijayantha, K. G. U. Chem. Commun. Cambridge 2002, 1030.
  8. Shen, Q.; Arae, D.; Toyoda, T. J. Photochem. Photobiol. A 2004, 164, 75. https://doi.org/10.1016/j.jphotochem.2003.12.027
  9. Nozik, A. J. Physica E-Amsterdam 2002, 14, 115. https://doi.org/10.1016/S1386-9477(02)00374-0
  10. Schaller, R.; Klimov, V. I. Phys. Rev. Lett. 2004, 92, 186601. https://doi.org/10.1103/PhysRevLett.92.186601
  11. Yu, P.; Zhu, K.; Norman, A. G.; Ferrere, S.; Frank, A. J.; Nozik, A. J. J. Phys. Chem. B 2006, 110, 25451. https://doi.org/10.1021/jp064817b
  12. Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385. https://doi.org/10.1021/ja056494n
  13. Plass, R.; Pelet, S.; Krueger, J.; Gratzel, M. J. Phys. Chem. B 2002, 106, 7578. https://doi.org/10.1021/jp020453l
  14. Rincon, M. E.; Jimenez, A.; Orihuela, A.; Martinez, G. Sol. Energy Mater. Sol. Cells 1998, 52, 399. https://doi.org/10.1016/S0927-0248(97)00238-9
  15. Rincon, M. E.; Gomez-Daza, O.; Corripio, C.; Orihuela, A. Thin Solid Films 2001, 389, 91. https://doi.org/10.1016/S0040-6090(01)00900-2
  16. Fang, J. H.; Lu, X. M.; Zhang, X. F.; Fu, D. G.; Lu, Z. H. Supramol. Sci. 1998, 5, 709. https://doi.org/10.1016/S0968-5677(98)00109-6
  17. Fang, J. H.; Wu, J. W.; Lu, X. M.; Shen, Y. C.; Lu, Z. H. Chem. Phys. Lett. 1997, 270, 145. https://doi.org/10.1016/S0009-2614(97)00333-3
  18. Chen, M. L.; Zhang, F. J.; Oh, W. C. New Carbon Materials 2009, 24, 159. https://doi.org/10.1016/S1872-5805(08)60045-1
  19. Oh, W. C.; Zhang, F. J.; Chen, M. L. B. Kor. Chem. Soc. 2009, 30, 2637. https://doi.org/10.5012/bkcs.2009.30.11.2637
  20. Wang, T. T.; Wang, J. L.; Zhu, Y. C.; Xue, F.; Cao, J.; Qian, Y. T. J. Phys. Chem. Solids 2010, 71, 940. https://doi.org/10.1016/j.jpcs.2010.04.001
  21. Raevskaya, A. E.; Stroyuk, A. L.; Kuchmiy, S. Ya.; Azhniuk, Yu. M.; Dzhagan, V. M.; Yukhymchuk, V. O.; Valakh, M. Ya. Colloids and Surfaces A: Physicochem. Eng. Aspects 2006, 290, 304. https://doi.org/10.1016/j.colsurfa.2006.05.038
  22. Oh, W. C.; Bae, J. S.; Chen, M. L. Bull. Kor. Chem. Soc. 2006, 27, 1423. https://doi.org/10.5012/bkcs.2006.27.9.1423
  23. Oh, W. C.; Chen, M. L. J. Ceram. Process Res. 2008, 9, 100.
  24. Lin, H.; Huang, C. P.; Li, W.; Ni, C.; Shah, S. I.; Tseng, Y. H. Appl. Catal. B: Environ. 2006, 68, 1. https://doi.org/10.1016/j.apcatb.2006.07.018
  25. Mastai, Y.; Polsky, R.; Koltypin, Y.; Gedanken, A.; Hodes, G. J. Am. Chem. Soc. 1999, 121, 10047. https://doi.org/10.1021/ja9908772
  26. Kortum, G. Springer: Berlin, 1973.
  27. Ho, W. K.; Yu, J. C. J. Mol. Catal. A: Chem. 2006, 247, 268. https://doi.org/10.1016/j.molcata.2005.11.057

Cited by

  1. CdSe/ZnO Composite via Galvanic Displacement Followed by Photocathodic Deposition: Hybrid Electrosynthesis and Characterization vol.116, pp.38, 2012, https://doi.org/10.1021/jp3065954
  2. Green Emitter Copper Clusters as Highly Efficient and Reusable Visible Degradation Photocatalysts vol.10, pp.18, 2014, https://doi.org/10.1002/smll.201400679
  3. nanotube array heterojunction with enhanced visible light photocatalytic activity vol.38, pp.7, 2014, https://doi.org/10.1039/C4NJ00024B
  4. Visible light induced photocatalytic activity of TiO2 nanowires photosensitized with CdSe quantum dots vol.115, pp.1, 2015, https://doi.org/10.1007/s11144-014-0815-y
  5. Synthesis and Characterization of CdSe/graphene Nanocomposites and their Catalytic Reusability Studies under Visible Light Radiation vol.52, pp.6, 2015, https://doi.org/10.4191/kcers.2015.52.6.502
  6. Photocatalytic Property of Nitrogen and Nickel Codoped Titanium Oxides vol.37, pp.11, 2016, https://doi.org/10.1002/bkcs.10966
  7. Mechano-synthesized orange TiO2 shows significant photocatalysis under visible light vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-33772-6
  8. Enhancement of photoelectrochemical performance of CdSe sensitized seeded TiO2 films vol.29, pp.19, 2018, https://doi.org/10.1007/s10854-018-9715-7
  9. CNT–CdSe QDs nanocomposites: synthesis and photoluminescence studies vol.29, pp.16, 2018, https://doi.org/10.1007/s10854-018-9475-4
  10. Influence of Inorganic Ions and pH on the Photodegradation of 1-Methylimidazole-2-thiol with TiO2 Photocatalyst Based on Magnetic Multi-walled Carbon Nanotubes vol.35, pp.1, 2014, https://doi.org/10.5012/bkcs.2014.35.1.76
  11. CdSe nanorod/TiO 2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity vol.8, pp.None, 2011, https://doi.org/10.3762/bjnano.8.273