References
- Linsebigler, A. L.; Lu, G.; Yates, J. T., Jr. Chem. Rev. 1995, 95, 735. https://doi.org/10.1021/cr00035a013
- Serpone, N. Solar Energy Mater. Solar Cells 1995, 38, 369. https://doi.org/10.1016/0927-0248(94)00230-4
- Kawasaki, K.; Yamazaki, D.; Kinoshita, A.; Hirayama, H.; Tsutsui, K.; Aoyagi, Y. Appl. Phys. Lett. 2001, 79, 2243. https://doi.org/10.1063/1.1405422
- Nielsen, T. R.; Gartner, P.; Jahnke, F. Phys. Rev. B 2004, 69, 235314. https://doi.org/10.1103/PhysRevB.69.235314
- Todaro, M. T.; De Giorgi, M.; Tasco, V.; De Vittorio, M.; Cingolani, R.; Passaseo, A. Appl. Phys. Lett. 2004, 84, 2482. https://doi.org/10.1063/1.1687979
- Ye, Z.; Campbell, J. C.; Chen, Z.; Kim, E. T.; Madhukar, A. J. Appl. Phys. 2002, 92, 7462. https://doi.org/10.1063/1.1517750
- Peter, L. M.; Riley, D. J.; Tull, E. J.; Wijayantha, K. G. U. Chem. Commun. Cambridge 2002, 1030.
- Shen, Q.; Arae, D.; Toyoda, T. J. Photochem. Photobiol. A 2004, 164, 75. https://doi.org/10.1016/j.jphotochem.2003.12.027
- Nozik, A. J. Physica E-Amsterdam 2002, 14, 115. https://doi.org/10.1016/S1386-9477(02)00374-0
- Schaller, R.; Klimov, V. I. Phys. Rev. Lett. 2004, 92, 186601. https://doi.org/10.1103/PhysRevLett.92.186601
- Yu, P.; Zhu, K.; Norman, A. G.; Ferrere, S.; Frank, A. J.; Nozik, A. J. J. Phys. Chem. B 2006, 110, 25451. https://doi.org/10.1021/jp064817b
- Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385. https://doi.org/10.1021/ja056494n
- Plass, R.; Pelet, S.; Krueger, J.; Gratzel, M. J. Phys. Chem. B 2002, 106, 7578. https://doi.org/10.1021/jp020453l
- Rincon, M. E.; Jimenez, A.; Orihuela, A.; Martinez, G. Sol. Energy Mater. Sol. Cells 1998, 52, 399. https://doi.org/10.1016/S0927-0248(97)00238-9
- Rincon, M. E.; Gomez-Daza, O.; Corripio, C.; Orihuela, A. Thin Solid Films 2001, 389, 91. https://doi.org/10.1016/S0040-6090(01)00900-2
- Fang, J. H.; Lu, X. M.; Zhang, X. F.; Fu, D. G.; Lu, Z. H. Supramol. Sci. 1998, 5, 709. https://doi.org/10.1016/S0968-5677(98)00109-6
- Fang, J. H.; Wu, J. W.; Lu, X. M.; Shen, Y. C.; Lu, Z. H. Chem. Phys. Lett. 1997, 270, 145. https://doi.org/10.1016/S0009-2614(97)00333-3
- Chen, M. L.; Zhang, F. J.; Oh, W. C. New Carbon Materials 2009, 24, 159. https://doi.org/10.1016/S1872-5805(08)60045-1
- Oh, W. C.; Zhang, F. J.; Chen, M. L. B. Kor. Chem. Soc. 2009, 30, 2637. https://doi.org/10.5012/bkcs.2009.30.11.2637
- Wang, T. T.; Wang, J. L.; Zhu, Y. C.; Xue, F.; Cao, J.; Qian, Y. T. J. Phys. Chem. Solids 2010, 71, 940. https://doi.org/10.1016/j.jpcs.2010.04.001
- Raevskaya, A. E.; Stroyuk, A. L.; Kuchmiy, S. Ya.; Azhniuk, Yu. M.; Dzhagan, V. M.; Yukhymchuk, V. O.; Valakh, M. Ya. Colloids and Surfaces A: Physicochem. Eng. Aspects 2006, 290, 304. https://doi.org/10.1016/j.colsurfa.2006.05.038
- Oh, W. C.; Bae, J. S.; Chen, M. L. Bull. Kor. Chem. Soc. 2006, 27, 1423. https://doi.org/10.5012/bkcs.2006.27.9.1423
- Oh, W. C.; Chen, M. L. J. Ceram. Process Res. 2008, 9, 100.
- Lin, H.; Huang, C. P.; Li, W.; Ni, C.; Shah, S. I.; Tseng, Y. H. Appl. Catal. B: Environ. 2006, 68, 1. https://doi.org/10.1016/j.apcatb.2006.07.018
- Mastai, Y.; Polsky, R.; Koltypin, Y.; Gedanken, A.; Hodes, G. J. Am. Chem. Soc. 1999, 121, 10047. https://doi.org/10.1021/ja9908772
- Kortum, G. Springer: Berlin, 1973.
- Ho, W. K.; Yu, J. C. J. Mol. Catal. A: Chem. 2006, 247, 268. https://doi.org/10.1016/j.molcata.2005.11.057
Cited by
- CdSe/ZnO Composite via Galvanic Displacement Followed by Photocathodic Deposition: Hybrid Electrosynthesis and Characterization vol.116, pp.38, 2012, https://doi.org/10.1021/jp3065954
- Green Emitter Copper Clusters as Highly Efficient and Reusable Visible Degradation Photocatalysts vol.10, pp.18, 2014, https://doi.org/10.1002/smll.201400679
- nanotube array heterojunction with enhanced visible light photocatalytic activity vol.38, pp.7, 2014, https://doi.org/10.1039/C4NJ00024B
- Visible light induced photocatalytic activity of TiO2 nanowires photosensitized with CdSe quantum dots vol.115, pp.1, 2015, https://doi.org/10.1007/s11144-014-0815-y
- Synthesis and Characterization of CdSe/graphene Nanocomposites and their Catalytic Reusability Studies under Visible Light Radiation vol.52, pp.6, 2015, https://doi.org/10.4191/kcers.2015.52.6.502
- Photocatalytic Property of Nitrogen and Nickel Codoped Titanium Oxides vol.37, pp.11, 2016, https://doi.org/10.1002/bkcs.10966
- Mechano-synthesized orange TiO2 shows significant photocatalysis under visible light vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-33772-6
- Enhancement of photoelectrochemical performance of CdSe sensitized seeded TiO2 films vol.29, pp.19, 2018, https://doi.org/10.1007/s10854-018-9715-7
- CNT–CdSe QDs nanocomposites: synthesis and photoluminescence studies vol.29, pp.16, 2018, https://doi.org/10.1007/s10854-018-9475-4
- Influence of Inorganic Ions and pH on the Photodegradation of 1-Methylimidazole-2-thiol with TiO2 Photocatalyst Based on Magnetic Multi-walled Carbon Nanotubes vol.35, pp.1, 2014, https://doi.org/10.5012/bkcs.2014.35.1.76
- CdSe nanorod/TiO 2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity vol.8, pp.None, 2011, https://doi.org/10.3762/bjnano.8.273