DOI QR코드

DOI QR Code

Solution Structure of Water-soluble Mutant of Crambin and Implication for Protein Solubility

  • Kang, Su-Jin (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Lim, Jong-Soo (College of Pharmacy, Dongguk University) ;
  • Lee, Bong-Jin (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Ahn, Hee-Chul (College of Pharmacy, Dongguk University)
  • Received : 2011.01.24
  • Accepted : 2011.03.29
  • Published : 2011.05.20

Abstract

Water-soluble mutant of intrinsically insoluble protein, crambin, was produced by mutagenesis based on the sequence analysis with homologous proteins. Thr1, Phe13, and Lys33 of crambin were substituted for Lys, Tyr, and Lys, respectively. The resultant mutant was soluble in aqueous buffer as well as in dodecylphosphocholine (DPC) micelle solution. The $^1H-^{15}N$ spectrum of the mutant crambin showed spectral similarity to that of the wild-type protein except for local regions proximal to the sites of mutation. Solution structure of water-soluble mutant crambin was determined in aqueous buffer by NMR spectroscopy. The structure was almost identical to the wild-type structure determined in non-aqueous solvent. Subtle difference in structure was very local and related to the change of the intra- and inter-protein hydrophobic interaction of crambin. The structural details for the enhanced solubility of crambin in aqueous solvent by the mutation were provided and discussed.

Keywords

References

  1. Wang, W. Int. J. Pharm. 1999, 185, 129. https://doi.org/10.1016/S0378-5173(99)00152-0
  2. Bondos, S. E.; Bicknell, A. Anal. Biochem. 2003, 316, 223. https://doi.org/10.1016/S0003-2697(03)00059-9
  3. Bagby, S.; Tong, K. I.; Ikura, M. Methods Enzymol., Pt. B 2001, 339, 20. https://doi.org/10.1016/S0076-6879(01)39307-2
  4. Pedelacq, J. D.; Piltch, E.; Liong, E. C.; Berendzen, J.; Kim, C. Y.; Rho, B. S.; Park, M. S.; Terwilliger, T. C.; Waldo, G. S. Nat.Biotechnol. 2002, 20, 927. https://doi.org/10.1038/nbt732
  5. Zhou, P.; Lugovskoy, A. A.; Wagner, G. J. Biomol. NMR 2001, 20, 11. https://doi.org/10.1023/A:1011258906244
  6. Edwards, A. M.; Arrowsmith, C. H.; Christendat, D.; Dharamsi, A.; Friesen, J. D.; Greenblatt, J. F.; Vedadi, M. Nat. Struct. Biol. 2000, 7, 970. https://doi.org/10.1038/80751
  7. Savchenko, A.; Yee, A.; Khachatryan, A.; Skarina, T.; Evdokimova, E.; Pavlova, M.; Semesi, A.; Northey, J.; Beasley, S.; Lan, N.; Das, R.; Gerstein, M.; Arrowmith, C. H.; Edwards, A. M. Proteins 2003, 50, 392.
  8. Misawa, S.; Kumagai, I. Biopolymers 1999, 51, 297. https://doi.org/10.1002/(SICI)1097-0282(1999)51:4<297::AID-BIP5>3.0.CO;2-I
  9. De Bernardez Clark, E. Curr. Opin. Biotechnol. 2001, 12, 202. https://doi.org/10.1016/S0958-1669(00)00200-7
  10. Golovanov, A. P.; Hautbergue, G. M.; Wilson, S. A.; Lian, L.-Y. J. Am. Chem. Soc. 2004, 126, 8933. https://doi.org/10.1021/ja049297h
  11. Van Etten, C. H.; Nielson, H. C.; Peters, J. E. Phytochemistry 1965, 4, 467. https://doi.org/10.1016/S0031-9422(00)86198-1
  12. Hendrickson, W. A.; Teeter, M. M. Nature 1981, 290, 107. https://doi.org/10.1038/290107a0
  13. Jelsch, C.; Teeter, M. M.; Lamzin, V.; Pichon-Lesme, V.; Blessing, B.; Lecomte, C. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 3171. https://doi.org/10.1073/pnas.97.7.3171
  14. Bonvin, A. M.; Rullmann, J. A.; Lamerichs, R. M.; Boelens, R.; Kaptein, R. Proteins 1993, 15, 385. https://doi.org/10.1002/prot.340150406
  15. Nilges, M.; Clore, G. M.; Gronenborn, A. M. FEBS Lett. 1988, 239, 129. https://doi.org/10.1016/0014-5793(88)80559-3
  16. Xu, Y.; Wu, J.; Gorenstein, D.; Braun, W. J. Magn. Reson. 1999, 136, 76. https://doi.org/10.1006/jmre.1998.1616
  17. Spronk, C. A.; Linge, J. P.; Hibers, C. W.; Vuister, G. W. J. Biomol. NMR 2002, 22, 281. https://doi.org/10.1023/A:1014971029663
  18. Linge, J. P.; Williams, M. A.; Spronk, C. A.; Bonvin, A. M.; Nilges, M. Proteins 2003, 50, 496. https://doi.org/10.1002/prot.10299
  19. Jee, J.; Ahn, H.-C. Bull. Korean Chem. Soc. 2009, 30, 1139. https://doi.org/10.5012/bkcs.2009.30.5.1139
  20. Ahn, H.-C.; Juranic, N.; Macura, S.; Markley, J. L. J. Am. Chem. Soc. 2006, 128, 4398. https://doi.org/10.1021/ja057773d
  21. Stec, B. Cell. Mol. Life Sci. 2006, 63, 1370. https://doi.org/10.1007/s00018-005-5574-5
  22. Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A. J. Biomol. NMR 1995, 6, 277.
  23. Johnson, B. Methods Mol. Biol. 2004, 278, 313.
  24. Cornilescu, G.; Delaglio, F.; Bax, A. J. Biomol. NMR 1999, 13, 289. https://doi.org/10.1023/A:1008392405740
  25. Linge, J. P.; O'Donoghue, S. I.; Nilges, M. Methods Enzymol. 2001, 339, 71. https://doi.org/10.1016/S0076-6879(01)39310-2
  26. Brunger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.; Grosse-Kunstleve, R. W.; Jiang, J. S.; Kuszewski, J.; Nilges, M.; Pannu, N. S.; Read, R. J.; Rice, L. M.; Simonson, T.; Warren, G.. L. Acta Cryst. D 1998, 54, 905.
  27. Linge, J. P.; Williams, M. A.; Spronk, C. A.; Bonvin, A. M.; Nilges, M. Proteins 2003, 50, 496. https://doi.org/10.1002/prot.10299
  28. Laskowski, R. A.; Rullmannn, M. A.; MacArthur, M. W.; Kaptein, R.; Thornton, J. M. J. Biomol. NMR 1996, 8, 477.
  29. Finn, R. D.; Mistry, J.; Tate, J.; Coggill, J.; Heger, A.; Pollington, J. E.; Gavin, O. L.; Gunesekaran, P.; Ceric, G.; Forslund, K.; Holm, L.; Sonnhammer, E. L.; Eddy, S. R.; Bateman, A. Nucleic Acids Res. 2010, 38, D211. https://doi.org/10.1093/nar/gkp985
  30. Tina, K., G.; Bhadra, R.; Srinivasan, N. Nucleic Acids. Res. 2007, 35, W473. https://doi.org/10.1093/nar/gkm423