$\mathrm{AgBF}_{4} /[\mathrm{Bmim}] \mathrm{BF}_{4}$-Catalyzed [3+2] Cycloaddition of Cyclic Diazodicarbonyl Compounds: Efficient Synthesis of 2,3-Dihydrofurans and Conversion to 3-Acylfurans

Likai Xia, Yong Rok Lee, ${ }^{*}$ Sung Hong Kim, ${ }^{\dagger}$ and Won Seok Lyoo ${ }^{\ddagger}$
School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Korea. *E-mail: yrlee@yu.ac.kr
${ }^{\dagger}$ Analysis Research Division, Daegu Center, Korea Basic Science Institute, Daegu 702-701, Korea
${ }^{*}$ School of Textiles, Yeungnam University, Gyeongsan 712-749, Korea
Received March 16, 2011, Accepted March 18, 2011

Abstract

A novel and efficient method for the synthesis of 2,3-dihydrofurans bearing a variety of substituents on the dihydrofuran ring was achieved by the reaction of cyclic diazodicarbonyl compounds with styrene and vinyl acetate. The key strategy was $\mathrm{AgBF}_{4} /[\mathrm{Bmim}] \mathrm{BF}_{4}$-catalyzed $[3+2]$ cycloaddition. The synthesized dihydrofurans with an acetate group were further converted to the corresponding 3-acylfurans.

Key Words : $\mathrm{AgBF}_{4} /\left[\mathrm{Bmim}^{2} \mathrm{BF}_{4}\right.$, [3+2] cycloaddition, Diazodicarbonyls, 2,3-Dihydrofurans

Introduction

2,3-Dihydrofurans are one of the most commonly observed classes of structural units in natural and unnatural products with biological properties and activities. ${ }^{1}$ Molecules with the 2,3-dihydrofuran moiety are widely used in the pharmaceutical, flavour, insecticidal, and fish antifeedant industries. ${ }^{2}$ Their importance in biological activity and usefulness as synthetic intermediates for natural product synthesis have prompted a search for better method of synthesis.
Several methods for the synthesis of 2,3-dihydrofurans have already been developed, the majority of which have been accomplished through ionic ${ }^{3}$ or radical ${ }^{4}$ pathways through the oxidative addition of 1,3-dicarbonyl compounds to the appropriate olefins. In addition, the reaction between iodonium ylides of β-diketones and olefins in the presence of $\mathrm{Cu}(\mathrm{acac})_{2}$ as a catalyst results in complex mixtures of inseparable products at higher temperatures. ${ }^{5}$ In the case of CAN- and the $\mathrm{Mn}(\mathrm{OAc})_{3}$-mediated oxidative cycloaddition of β-dicarbonyl compounds to substituted styrenes, dihydrofurans are produced in low yields. This may be due to the polymerization of styrenic olefins, which requires an excess amount of styrene to complete the reaction. ${ }^{6}$ In particular, the use of more than two equivalents of metal reagents usually made the separation difficult.

Successful methods for the synthesis of 2,3-dihydrofurans from cyclic diazodicarbonyl compounds were achieved utilizing the Rh (II) complex by us ${ }^{7}$ and others. ${ }^{8}$ Nevertheless, the $\mathrm{Rh}($ II $)$ complex is very expensive, so cheaper catalysts are desirable. Among these, silver (I) catalysts have garnered much attention due to their mild reaction conditions and successful usage in several homogeneous and heterogeneous reactions. ${ }^{9}$ We report a simple and facile synthesis for 2,3dihydrofurans by $\mathrm{AgBF}_{4} /[\mathrm{Bmim}] \mathrm{BF}_{4}$-catalyzed [3+2] cycloaddition of diazodicarbonyls to olefins (Scheme 1). We also describe a conversion of 2,3-dihydrofurans to 3-acylfurans.
Several $\operatorname{Ag}(\mathrm{I})$-catalysts were first investigated for the synthesis of 2,3-dihydrofurans starting from 2-diazo-5,5-di-

Scheme 1. $\mathrm{AgBF}_{4} /[\mathrm{Bmim}] \mathrm{BF}_{4}$-catalyzed [3+2] cycloaddition of diazodicarbonyls with olefins.
methylcyclohexanedione (1) and styrene. The results are summarized in Table 1. Among the silver(I) catalysts (10 $\mathrm{mol} \%$) tested, $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{AgNO}_{3}, \mathrm{AgClO}_{4}$, and $\mathrm{AgSO}_{2} \mathrm{CF}_{3}$ in toluene at $70^{\circ} \mathrm{C}$ for 10 h gave no cycloadducts. With $\mathrm{AgBF}_{4}(10 \mathrm{~mol} \%)$ as a catalyst, reactions in methylene

Table 1. Reaction of 2-diazo-5,5-dimethylcyclohexanedione (1) with styrene under several $\mathrm{Ag}(\mathrm{I})$ catalysts

1
2

Catalysts	Solvent	Temp.	Time (h)	Yield (\%)
$\mathrm{Ag}_{2} \mathrm{O}$	toluene	$70^{\circ} \mathrm{C}$	10	0
$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	toluene	$70^{\circ} \mathrm{C}$	10	0
AgNO_{3}	toluene	$70^{\circ} \mathrm{C}$	10	0
AgClO_{4}	toluene	$70^{\circ} \mathrm{C}$	10	0
$\mathrm{AgSO}_{2} \mathrm{CF}_{3}$	toluene	$70^{\circ} \mathrm{C}$	10	0
AgBF_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	48	0
AgBF_{4}	THF	rt	48	0
AgBF_{4}	acetonitrile	rt	48	0
AgBF_{4}	toluene	rt	48	22
AgBF_{4}	toluene	$70^{\circ} \mathrm{C}$	10	47
$\mathrm{AgBF}_{4} /\left[\mathrm{Bmim}^{\circ}\right] \mathrm{BF}_{4}$	benzene	$70^{\circ} \mathrm{C}$	5	60
$\mathrm{AgBF}_{4} /\left[\mathrm{Bmim}_{3}\right] \mathrm{BF}_{4}$	toluene	$70^{\circ} \mathrm{C}$	5	71
$\mathrm{AgSbF}_{6} /\left[\mathrm{Bmim}^{\circ}\right] \mathrm{BF}_{4}$	toluene	$70^{\circ} \mathrm{C}$	10	30
$\left[{\mathrm{Bmim}] \mathrm{BF}_{4}}^{\text {toluene }}\right.$	$70^{\circ} \mathrm{C}$	12	0	

${ }^{a}$ All reactions were carried out with $\mathbf{1}(1.0 \mathrm{mmol})$ and styrene $(5.0 \mathrm{mmol})$ in the presence of catalyst $(0.10 \mathrm{mmol})$ in solvent $(2.0 \mathrm{~mL})$. $[\mathrm{Bmim}] \mathrm{BF}_{4}$ $(0.1 \mathrm{~mL})$ was used in this reaction. ${ }^{b}$ Isolated yields.

Table 2. Synthesis of 2,3-dihydrofurans starting from cyclic diazodicarbonyls with styrene and vinyl acetae in the presence of $\mathrm{AgBF}_{4} /$ [Bmim] $\mathrm{BF}_{4}{ }^{a}$
Entry
${ }^{a}$ Reaction conditions: cyclic diazodicarbonyl compound $\mathbf{1}(1.0 \mathrm{mmol})$, olefin (5.0 mmol), toluene (2.0 mL), using $\mathrm{AgBF}_{4}(0.10 \mathrm{mmol}) /\left[\mathrm{Bmim}^{2}\right] \mathrm{BF}_{4}(8$ drops) as a catalyst under a nitrogen atmosphere. ${ }^{b}$ All products gave satisfactory spectral data. ${ }^{12}{ }^{c}$ Isolated yields. ${ }^{d}$ A 1:1 mixture of diastereomers.
chloride, THF, and acetonitrile solvents at room temperature for 48 h did not give any cycloadducts. However, with toluene at room temperature for 48 h , the expected product 2 was produced in 22% yield. Upon raising the temperature to $70^{\circ} \mathrm{C}$, the yield of 2 increased to 47%. Surprisingly, significant increases in yield were observed with addition of 1-butyl-3-methylimidazolium tetrafluoroborate ($[\mathrm{Bmim}] \mathrm{BF}_{4}$). Treatment of $\mathbf{1}$ with styrene in the presence of $\mathrm{AgBF}_{4} /$ $[\mathrm{Bmim}] \mathrm{BF}_{4}$ in benzene or toluene at $70^{\circ} \mathrm{C}$ for 5 h provided $\mathbf{2}$ in 60 and 71% yields, respectively. This result may be due to the increase in solubility of the $\mathrm{Ag}(\mathrm{I})$ salt by added ionic liquids. $\mathrm{Ag}(\mathrm{I})$ catalysts have been shown to be activated after stabilization with ionic liquids. ${ }^{10}$ In this case, any C-H insertion products of toluene produced by the rhodium-catalyzed
reaction were undetected. With $\mathrm{AgSbF}_{6} /[\mathrm{bmim}] \mathrm{BF}_{4}$ as the other catalyst, cycloadduct $\mathbf{2}$ was also obtained in 30% yield. However, with only $[\mathrm{Bmim}] \mathrm{BF}_{4}, \mathbf{2}$ was not produced.

Next, additional reactions of a variety of cyclic diazodicarbonyl compounds with styrene and vinyl acetate were attempted in the presence of $\mathrm{AgBF}_{4}(10 \mathrm{~mol} \%) /[\mathrm{Bmim}] \mathrm{BF}_{4}$. The results are collected in Table 2. Reaction of 1 with vinyl acetate at room temperature for 24 h provided cycloadduct 9 in 61% yield (entry 1). Similarly, treatment of $\mathbf{3}$ with styrene and vinyl acetate gave products $\mathbf{1 0}$ and $\mathbf{1 1}$ in 74 and 59% yield, respectively (entries 2 and 3). Reactions of diazo compounds 4-7, with methyl, isopropyl, phenyl and aryl substituents on the cyclohexanedione ring, were successful. In these cases, cycloadducts $\mathbf{1 2 - 1 9}$ were produced as a 1:1

Scheme 2
mixture of diastereomers (entries 4-11). Reaction of 4 with styrene and vinyl acetate provided cycloadducts $\mathbf{1 2}$ and $\mathbf{1 3}$ in 68 and 52% yield, respectively, whereas that of 5 gave 14 and $\mathbf{1 5}$ in 57 and 61% yields, respectively. Similarly, treatment of 6 and 7 with styrene and vinyl acetate afforded cycloadducts $\mathbf{1 6 - 1 9}$ in $69,60,60$, and 58% yield, respectively (entries 8-11). Treatment of 2-diazophenalene-1,3dione (8) with styrene afforded cycloadduct 20 in 54\% yield (entry 12).
A plausible mechanism for the formation of $\mathbf{2}$ is shown in Scheme 2 in light of the reported $\mathrm{Rh}(\mathrm{II})$-catalyzed reaction. ${ }^{11,7 a}$ Diazo compound 1 first gives carbene 21 through the loss of a nitrogen by $\mathrm{Ag}(\mathrm{I}) /[\mathrm{Bmim}] \mathrm{BF}_{4}$. Carbene 21 then reacts with styrene to give the cyclopropane 22, which undergoes bond cleavage to give zwitterion 23. Ring closure of intermediate 23 then gives dihydrofuran 2.

As an application of this methodology, the conversion of dihydrofurans with an acetate group to the corresponding 3acylfuran was next attempted. The results are depicted in Table 3. Treatment of $\mathbf{9}$ and $\mathbf{1 1}$ with p-TsOH in refluxing toluene for 2 h gave 3-acylfurans $\mathbf{2 4}$ and $\mathbf{2 5}$ in 89 and 81%

Table 3. Synthesis of 3-acylfurans 24-29 from dihydrofurans
Entry
yield, respectively. Similarly, reactions of other dihydrofurans, $13,15,17$, and 19 as a $1: 1$ mixture of diastereomers provided 3-acylfurans 25-29 in 80-85\% yield.

In summary, $\mathrm{AgBF}_{4} /[\mathrm{Bmim}] \mathrm{BF}_{4}$-catalyzed [3+2] cycloaddition reactions of diazodicarbonyl compounds with styrene and vinyl acetate were carried out. These reactions provided rapid entry to the synthesis of 2,3-dihydrofurans in moderate yields. This method has the advantages of mild reaction conditions and simple manipulation. The dihydrofurans with an acetate group were further converted to the corresponding 3-acylfurans.

Experimental

All experiments were carried out in a nitrogen atmosphere. Merck, pre-coated silica gel plates (Art. 5554) with a fluorescent indicator were used for analytical TLC. Flash column chromatography was performed using silica gel 9385 (Merck). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Model ARX (300 and 75 MHz , respectively) spectrometer in CDCl_{3} as the solvent. IR spectra were recorded on a Jasco FTIR 5300 spectrophotometer. HRMS and MS were carried out at the Korea Basic Science Institute.

General Procedure for the Synthesis of 2,3-Dihydrofurans. To a solution of cyclic diazodicarbonyl compound $\mathbf{1}$ (1.0 mmol) and the corresponding olefins (5.0 mmol) in toluene $(2.0 \mathrm{~mL})$ was added silver tetrafluoroborate $(0.10 \mathrm{mmol})$ and $[B m i m] \mathrm{BF}_{4}(0.1 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred at r.t. for 24 h or 70 for 5 h and then cooled to room temperature. Water (20 mL) was added and the solution was extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). Evaporation of the solvent and purification by column chromatography on silica gel using hexane-ethyl acetate (4:1) gave products.
6,6-Dimethyl-2-phenyl-2,3,6,7-tetrahydrobenzofuran-4 $\mathbf{(5 H)}$-one (2). Yield: 71\%, a yellow oil; IR (neat): 3064, 2959, 1640, 1403, 1220, 1165, 1045, 961, 758, 701, $628 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.70(\mathrm{dd}$, $J=10.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.77(\mathrm{~m}, 1 \mathrm{H})$, $2.31(\mathrm{~s}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 194.8,176.1,140.6,128.8,128.5,125.8,111.4$, 86.5, 50.9, 37.7, 34.1, 33.8, 28.8, 28.5.

6,6-Dimethyl-4-oxo-2,3,4,5,6,7-hexahydrobenzofuran-2yl acetate (9). Yield: 61\%, a yellow oil; IR (neat): 2960, 2879, 1760, 1649, 1407, 1212, 1165, 1052, 946, 849, 780, $734 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.68$ (dd, $J=7.5$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=16.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=$ 16.2, 2.4 Hz, 1H), $2.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~d}, J=5.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.5,174.2,169.4,110.8,98.8,50.8$, 37.2, 34.2, 31.7, 28.9, 28.2, 20.9.

2-Phenyl-2,3,6,7-tetrahydrobenzofuran-4(5H)-one (10). Yield: 74\%, a yellow oil; IR (neat): 3032, 2948, 1634, 1495, 1454, 1402, 1289, 1231, 1182, 1061, 1022, 997, 907, 760, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.21(\mathrm{~m}, 5 \mathrm{H})$, 5.66 (dd, $J=10.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.73$ $(\mathrm{m}, 1 \mathrm{H}), 2.45-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.94$
(m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 195.6, 177.5, 140.4, 128.6, 128.3, 125.7, 112.8, 86.2, 36.2, 33.7, 23.7, 21.5.

4-Oxo-2,3,4,5,6,7-hexahydrobenzofuran-2-yl acetate (11). Yield: 59\%, a yellow oil; IR (neat): 2951, 1760, 1649, 1407, 1216, 1165, 1053, 938, 872, $775 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.67(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=16.2$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.46(\mathrm{~m}, 2 \mathrm{H})$, 2.35-2.31 (m, 2H), $2.07(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.98(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.2,175.3,169.4,112.2,98.5$, 36.4, 31.9, 23.4, 21.5, 20.9.

6-Methyl-2-phenyl-2,3,6,7-tetrahydrobenzofuran-4(5H)one (12). Yield: 68%, a yellow oil; IR (neat): 3034, 2957, $1634,1495,1454,1402,1248,1211,1138,1053,1028,924$, 901, 760, $700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-$ $7.18(\mathrm{~m}, 5 \mathrm{H}), 5.71-5.64(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.82-$ $2.72(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.17-$ $2.04(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 195.5,177.4,140.4,130.2,128.5,125.8,112.4$, 86.7, 44.7, 33.7, 31.8, 29.8, 20.9.

6-Methyl-4-oxo-2,3,4,5,6,7-hexahydrobenzofuran-2-yl acetate (13). Yield: 52\%, a yellow oil; IR (neat): 2928, 1736, 1633, 1404, 1205, 1142, 1049, $736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.70-6.66(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.97(\mathrm{~m}, 1 \mathrm{H})$, 2.77-2.70 (m, 1H), 2.52-2.48 (m, 2H), 2.43-2.34 (m, 2H), $2.07(\mathrm{~s}, 3 \mathrm{H}), 2.06-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.09-1.06(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.9,175.0,169.4,111.9,98.7$, $45.0,31.9,31.5,31.3,29.8,20.9$; HRMS calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}: 210.0892$, Found 210.0894.
6-Isopropyl-2-phenyl-2,3,6,7-tetrahydrobenzofuran-4(5H)one (14). Yield: 57%, a yellow oil; IR (neat): 2959, 1640, 1452, 1402, 1248, 1209, 1049, 758, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.79-5.71(\mathrm{~m}, 1 \mathrm{H}), 3.28-$ $3.21(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.34-$ $2.08(\mathrm{~m}, 2 \mathrm{H}), 2.03-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.6,177.9$, $140.4,128.8,128.5,125.9,112.5,86.9,41.3,40.6,33.8$, 32.0, 29.7, 27.6, 19.6; HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}$: 256.1463, Found 256.1466.

6-Isopropyl-4-oxo-2,3,4,5,6,7-hexahydrobenzofuran-2yl acetate (15). Yield: 61%, a yellow oil; IR (neat): 2961, 1761, 1651, 1404, 1226, 1202, 1049, $939 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.72-6.67(\mathrm{~m}, 1 \mathrm{H}), 3.07-2.96(\mathrm{~m}, 1 \mathrm{H})$, 2.79-2.71 (m, 1H), 2.52-2.39 (m, 2H), 2.46-2.13 (m, 2H), $2.09(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.2,175.6$, 169.3, 112.0, 98.7, 41.0, 40.6, 31.8, 31.7, 26.9, 20.8, 19.7, 19.5; HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}: 238.1205$, Found 238.1209.

2,6-Diphenyl-2,3,6,7-tetrahydrobenzofuran-4(5H)-one (16). Yield: 69%, a yellow oil; IR (neat): 2944, 1632, 1402, $1248,1207,1046,932,764,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.32-7.26 (m, 5H), 7.23-7.19 (m, 5H), 5.78-5.71 $(\mathrm{m}, 1 \mathrm{H}), 3.49-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.82$ (m, 1H), 2.72-2.65 (m, 2H), 2.62-2.59 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.0,176.5,142.6,140.5,128.9,128.6$, $127.2,126.8,126.0,125.8,112.9,87.0,43.9,40.5,33.9$, 31.5; HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2}: 290.1307$, Found

290.1308.

4-Oxo-6-phenyl-2,3,4,5,6,7-hexahydrobenzofuran-2-yl acetate (17). Yield: 60%, a yellow oil; IR (neat): 3030, 2932, 1761, 1647, 1495, 1404, 1364, 1258, 1227, 1202, $1165,1049,939,856,764,702,621 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 3 \mathrm{H})$, 6.65 (dd, $J=7.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.92$ $(\mathrm{m}, 1 \mathrm{H}), 2.75-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.48$ $(\mathrm{m}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.2, 174.2, 168.8, 141.9, 128.3, 126.6, 126.2, 111.9, 98.4, 43.2, 39.6, 31.4, 30.4, 20.4 .

6-(Benzo[d][1,3]dioxol-5-yl)-2-phenyl-2,3,6,7-tetrahydro-benzofuran-4(5H)-one (18). Yield: 60%, a yellow oil; IR (neat): $3027,2926,1736,1603,1491,1450,1246,1041$, $739,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.27(\mathrm{~m}$, $5 \mathrm{H}), 6.75-6.60(\mathrm{~m}, 3 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 5.80-5.73(\mathrm{~m}, 1 \mathrm{H})$, 3.40-3.23 (m, 2 H$), 2.92-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.63(\mathrm{~m}, 2 \mathrm{H})$, 2.58-2.54 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.7,176.3$, 147.7, 146.4, 140.4, 136.4, 128.7, 128.4, 125.7, 119.7, 112.7, 108.3, 107.0, 100.9, 86.6, 44.3, 40.0, 33.7, 31.7; HRMS m/z $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{4}: 334.1205$, Found 334.1201.

6-(Benzo[d][1,3]dioxol-5-yl)-4-oxo-2,3,4,5,6,7-hexahydro-benzofuran-2-yl acetate (19). Yield: 58\%, a yellow oil; IR (neat): 2922, 1759, 1645, 1491, 1443, 1404, 1246, 1200, 1040, 980, 853, 810, 775, $733 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 6.75-6.64 (m, 4H), $5.92(\mathrm{~s}, 2 \mathrm{H}), 3.43-3.26(\mathrm{~m}$, $1 \mathrm{H}), 3.11-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.63(\mathrm{~m}$, 2H), 2.57-2.53 (m, 2H), $2.09(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 193.6,174.4,169.3,147.9,146.5,136.1,119.7$, $112.1,108.4,107.0,101.0,98.8,44.3,40.2,31.9,31.4,20.9$; HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6}: 316.0947$, Found 316.0947.

9-Phenyl-8,9-dihydro-7H-phenaleno[1,2-b]furan-7-one (20): Yield: 54\%, a yellow oil; IR (neat): 2926, 1734, 1636, $1580,1435,1379,1325,1219,1020,878,845,777,700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 1 \mathrm{H})$, 7.61-7.55 (m, 1H), 7.44-7.36 (m, 5H), 6.04-5.98 (m, 1H), 3.72-3.63 (m, 1H), 3.27-3.19 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 181.6,166.7,140.8,135.3,135.1,134.1,133.3$, $133.0,130.0,128.8,128.5,127.4,126.8,126.7,126.4,125.9$, $114.8,86.8,35.3$; HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}_{2}$: 298.0994, Found 298.0996.

6,6-Dimethyl-6,7-dihydrobenzofuran-4(5H)-one (24). Yield: 89\%, a colorless oil; IR (neat): 3132, 2952, 2878, $1678,1596,1514,1445,1370,1281,1228,1174,1118,1042$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 2 \mathrm{H}), 1.15$ (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 194.0, 166.2, 142.7, 119.5, 106.0, 51.7, 37.1, 35.1, 28.3, 28.3; HRMS $m / z(\mathrm{M}+)$ calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$: 164.0837, Found: 164.0840.

6,7-Dihydrobenzofuran-4(5H)-one (25). Yield: 81\%, a colorless oil; IR (neat): 3131, 2948, 1677, 1595, 1516, 1447, 1414, 1294, 1242, 1184, 1119, $1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.89(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.9,166.7,142.2,120.6,105.9,37.2$,
22.8, 22.2; MS (EI) $136\left(\mathrm{M}^{+}\right), 121,108,94,80,77,63,55$, 52.

6-Methyl-6,7-dihydrobenzofuran-4(5H)-one (26). Yield: 85%, a colorless oil; IR (neat): 2953, 1678, 1594, 1448, 1413, 1285, 1219, 1119, $1039 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.00-2.25 (m, 5H), $1.18(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 194.6, 167.1,142.8, 121.0, 106.3, 46.1, 31.4, 30.8, 21.0 .

6-Isopropyl-6,7-dihydrobenzofuran-4(5H)-one (27). Yield: 84\%, a colorless oil; IR (neat): 3124, 2961, 2875, 1681, 1598, 1450, 1389, 1371, 1281, 1216, 1119, 1040, 993 , $739,690,631 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23(\mathrm{~d}, J$ $=1.8,1 \mathrm{H}), 6.65(\mathrm{~d}, J=1.8,1 \mathrm{H}), 2.88-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.56-$ $2.45(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.66-$ $1.58(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=6.9,6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 194.2,167.2,142.6,120.5,106.0,41.9,41.7,31.7$, 26.7, 19.6, 19.4; HRMS calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}$: 178.0994, Found 178.0995.
6-Phenyl-6,7-dihydrobenzofuran-4(5H)-one (28). Yield: 85%, a yellow oil; IR (KBr): 3150, 3123, 3061, 3029, 2952, 2900, 1682, 1600, 1515, 1499, 1450, 1413, 1278, 1215, 1120, 1038, 996, 897, 854, 765, 701, 615, 543, $503 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.27(\mathrm{~m}$, $3 \mathrm{H}), 6.70(\mathrm{~d}, J=1.5,1 \mathrm{H}), 3.57-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.18-2.97(\mathrm{~m}$, 2H), 2.75-2.72 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.7, 166.0, 142.8, 142.1, 128.5, 126.9, 126.5, 120.6, 106.2, 44.6, 40.9, 30.8.

6-(Benzo[d][1,3]dioxol-5-yl)-6,7-dihydrobenzofuran-4(5H)one (29): Yield: 80%, a colorless oil; mp $145-146^{\circ} \mathrm{C}$; IR (KBr): 3140, 3121, 2915, 2872, 1676, 1588, 1506, 1455, 1413, 1289, 1269, 1248, 1213, 1116, 1033, 925, 858, 770, 696, 632, 608, $582 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33$ (d, $J=2.1,1 \mathrm{H}), 6.77-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=1.8,1 \mathrm{H})$, $6.68(\mathrm{~d}, J=2.1,1 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 3.51-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.16-$ $3.09(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.67(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.0, 166.2, 149.7, 146.6, 143.1, 136.3, 120.9, 119.8, 108.4, 107.1, 106.4, 101.1, 45.2, 41.1, 31.5; HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4}$: 256.0736. Found 256.0734.

Acknowledgments. This work was supported by the 2011 Yeungnam University Research Grant.

References

1. (a) Dean, F. M. In Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Academic: New York, 1982; Vol. 30, pp 167-238. (b) Dean, F. M.; Sargent, M. V. In Comprehensive Heterocyclic Chemistry; Bird, C. W., Cheeseman, G. W. H., Eds.; Pergamon: New York, 1984; Vol. 4, part 3, pp 531-598. (c) Lipshutz, B. H.

Chem. Rev. 1986, 86, 795-820.
2. (a) Nakanishi, K. In Natural Products Chemistry; Kodansha: Tokyo, 1974. (b) The Chemistry of Heterocyclic Flavoring and Aroma Compounds, Vernin, G., Ed.; Ellis Horwood: Chichester, 1982. (c) Kubo, I.; Lee, Y. W.; Balogh-Nair, V.; Nakanishi, K.; Chapya, A. J. Chem. Soc., Chem. Commun. 1976, 949-850. (d) Schulte, G.; Scheuer, P. J.; McConnell, O. J. Helv. Chim. Acta 1980, 63, 2159-2167.
3. (a) Maharramov, A. M.; Sadikhova, N. D.; Mammadov, I. G.; Allahverdiyev, M. A. Chem. Heterocycl. Compd. 2009, 45, 400404. (b) Wang, Q.; Hou, H.; Hui, L.; Yan, C. J. Org. Chem. 2009, 74, 7403-7406. (c) Karade, N. N.; Shirodkar, S. G.; Patil, M. N.; Potrekar, R. A.; Karade, H. N. Tetrahedron Lett. 2003, 44, 67296731. (d) Aso, M.; Ojida, A.; Yang, G.; Cha, O. J.; Osawa, E.; Kanematsu, K. J. Org. Chem. 1993, 58, 3960-3968.
4. (a) Ferreira, S. B.; Kaiser, C. R.; Ferreira, V. F. Org. Prep. Proced. Int. 2009, 41, 211-215. (b) Ali, M. F.; Çalıskan, R.; Pahin, E.; Balci, M. Tetrahedron 2009, 65, 1430-1437. (c) Savitha, G.; Sudhakar, R.; Perumal, P. T. Tetrahedron Lett. 2008, 49, 72607263. (d) Ranu, B. C.; Adak, L.; Banerjee, S. Tetrahedron Lett. 2008, 49, 4613-4617. (e) Ceylan, M.; Findik, E. Synth. Commun. 2008, 38, 1070-1077. (f) Tanimori, S.; Kato, Y.; Kirihata, M. Synthesis 2006, 865-869. (g) Grigg, R.; Kongathip, N.; Kongathip, B.; Luangkamin, S.; Dondas, H. A. Tetrahedron 2001, 57, $9187-$ 9197. (h) Chen, F.-E.; Fu, H.; Meng, G.; Cheng, Y.; Hu, Y.-L. Synthesis 2000, 1091-1094.
5. (a) Asouti, A.; Hadjiarapoglou, L. P. Tetrahedron Lett. 1998, 39, 9073-9076. (b) Alexiou, I.; Gogonas, E. P.; Hadjiarapoglou, L. P. Synlett 1999, 12, 1925-1926.
6. (a) Nair, V.; Mathew, J.; Radhakrishnan, K. V. J. Chem. Soc., Perkin Trans. 1 1996, 1487-1492. (b) Iqbal, J.; Bhatia, B.; Nayyar, N. K. Tetrahedron 1991, 47, 6457-6468.
7. (a) Lee, Y. R.; Hwang, J. C. Eur. J. Org. Chem. 2005, 1568-1577. (b) Lee, Y. R.; Suk, J. Y. Tetrahedron 2002, 58, 2359-2367. (c) Lee, Y. R.; Suk, J. Y. Tetrahedron Lett. 2000, 41, 4795-4799. (d) Lee, Y. R. Synth. Commun. 1998, 28, 865-869. (e) Lee, Y. R.; Suk, J. Y. Heterocycles 1998, 48, 875-883. (g) Lee, Y. R.; Morehead, A. T., Jr. Tetrahedron 1995, 51, 4909-4922.
8. (a) Mueller, P.; Allenbach, Y. F.; Ferri, M.; Bernardinelli, G. ARKIVOC 2003, 80-95. (b) Davies, H. M. L.; Antoulinakis, E. G. Org. React. 2001, 57, 1-326. (c) Ishitani, H.; Achiwa, K. Heterocycles 1997, 46, 153-156.
9. (a) Oh, C. H.; Karmakar, S.; Park, H. S.; Ahn, Y. C.; Kim, J. W. J. Am. Chem. Soc. 2010, 132, 1792-1793. (b) Naodovic, M.; Yamamoto, H. Chem. Rev. 2008, 108, 3132-3148. (c) Alvarez-Corral, M.; Munoz-Dorado, M.; Rodriguez-Garcia, I. Chem. Rev. 2008, 108, 3174-3198. (d) Thompson, J. L.; Davies, H. M. L. J. Am. Chem. Soc. 2007, 129, 6090-6091.
10. (a) Martins, M. A. P.; Frizzo, C. P.; Moreira, D. N.; Zanatta, N.; Bonacorso, H. G. Chem Rev. 2008, 108, 2015-2050. (b) Pârvulescu, V. I.; Hardacre, C. Chem Rev. 2007, 107, 2615-2665. (c) Whitehead, J. A.; Lawrance G. A.; McCluskey, A. Green Chem. 2004, 6, 313315.
11. Wong, F. M.; Wang, J.; Hengge, A. C.; Wu, W. Org. Lett. 2007, 9, 1663-1665
12. (a) Mueller, P.; Allenbach, Y. F.; Bernardinelli, G. Helv. Chim. Acta. 2003, 86, 3164-3178. (b) Yilmaz, M.; Pekel, A. T. Synth. Comтип. 2001, 31, 3871-3876. (c) Lee, Y. R. Tetrahedron 1995, 51, 3087-3094. (d) Yoshida, J.; Yano, S.; Ozawa, T.; Kawabata, N. J. Org. Chem. 1985, 50, 3467-3473.

