DOI QR코드

DOI QR Code

Novel Electroluminescent Polymer Derived from Pyrene-Functionalized Polyaniline

  • Received : 2010.11.23
  • Accepted : 2011.03.02
  • Published : 2011.05.20

Abstract

A solution processable polymer was synthesized, by incorporating pyrene groups into the backbone of the polyaniline chain, and used as an emissive layer in an organic light emitting diode. The polyaniline base was reacted with acid chloride of pyrene butyric acid to form pyrene-functionalized polyaniline chains. The source of pyrene moiety was acid chloride of pyrene butyric acid. The formation of polymer from acid chloride of pyrene butyric acid and polyaniline was confirmed by the FTIR and $^1H$-NMR spectroscopy. Differential scanning calorimetry revealed high glass transition temperature of 210 $^{\circ}C$. Due to the presence of pyrene moieties in the backbone, the polyaniline synthesized in the present study is solution processable with light emitting property. The photoluminescence spectrum of the polymer revealed that emission lies in the blue region, with a peak at 475 nm. The light emitting device of this polymer exhibits the turn-on voltage of 15 V.

Keywords

References

  1. Nalwa, H. S. Handbook of Organic Conductive Molecules and Polymers; John Wiley & Sons: Chichester, 1997.
  2. Wei, Y.; Focke, W. W.; Wnek, G. E.; Ray, A.; MacDiarmid, A. G. J. Phys. Chem. 1989, 93, 495. https://doi.org/10.1021/j100338a095
  3. D'Aprano, G.; Leclerc, M.; Zotti, G.; Schiavon, G. Chem. Mater. 1995, 7, 33. https://doi.org/10.1021/cm00049a008
  4. Tang, C. W.; Van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913. https://doi.org/10.1063/1.98799
  5. Tang, C. W.; Van Slyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610. https://doi.org/10.1063/1.343409
  6. Chen, C. H.; Shi, J.; Tang, C. W. Macromol. Symp. 1997, 125, 1.
  7. Antoniadis, H.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 3055. https://doi.org/10.1063/1.122670
  8. Hoskawa, C.; Higashi, H.; Nakamura, H.; Kusumoto, T. Appl. Phys. Lett. 1995, 67, 3853. https://doi.org/10.1063/1.115295
  9. Noda, T.; Ogawa, H. H.; Shirota, Y. Adv. Mater. 1999, 11, 283. https://doi.org/10.1002/(SICI)1521-4095(199903)11:4<283::AID-ADMA283>3.0.CO;2-V
  10. Chen, C. H.; Tang, C. W.; Shi, J.; Klubek, K. P. Macromol. Symp. 1997, 125, 49.
  11. Shen, Z.; Burrows, P. E.; Bulovic, V.; Forrest, S. R.; Thompson, M. E. Science 1997, 276, 2009. https://doi.org/10.1126/science.276.5321.2009
  12. Xie, Z. Y.; Huang, J. S.; Li, C. N.; Liu, S. Y.; Wang, Y.; Li, Y. Q.; Shen, J. C. Appl. Phys. Lett. 1999, 74, 641. https://doi.org/10.1063/1.123190
  13. Kido, J.; Lizumi, Y. Appl. Phys. Lett. 1998, 73, 2721. https://doi.org/10.1063/1.122570
  14. Van Slyke, S. A.; Chen, C. H.; Tang, C. W. Appl. Phys. Lett. 1996, 69, 2160. https://doi.org/10.1063/1.117151
  15. Shi, J.; Tang, C. W. Appl. Phys. Lett. 1997, 70, 1665. https://doi.org/10.1063/1.118664
  16. Tang, C. W.; Van Slyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610. https://doi.org/10.1063/1.343409
  17. Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 359, 151.
  18. Burrows, P. E.; Forrest, S. R. Appl. Phys. Lett. 2000, 76, 2493. https://doi.org/10.1063/1.126386
  19. Tang, C. W.; Van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913. https://doi.org/10.1063/1.98799
  20. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539. https://doi.org/10.1038/347539a0
  21. Hung, L. S.; Chen, C. H. Mater. Sci. Eng R 2002, 39, 143. https://doi.org/10.1016/S0927-796X(02)00093-1
  22. Akcelrud, L. Prog. Polym. Sci. 2003, 28, 875. https://doi.org/10.1016/S0079-6700(02)00140-5
  23. Hatwar, T. K. In The 5th International Conference on Electroluminescence of Molecular Materials and Related Phenomena (ICEL-5); Phoenix, 2005.
  24. Pardo, D. A.; Jabbour, G. E.; Peyghambarian, N. Adv. Mater. 2000, 12, 1249. https://doi.org/10.1002/1521-4095(200009)12:17<1249::AID-ADMA1249>3.0.CO;2-Y
  25. de Gans, B.; Duineveld, P. C.; Schubert, U. S. Adv. Mater. 2004, 16, 203. https://doi.org/10.1002/adma.200300385
  26. Palaniappan, S.; John, A.; Amarnath, C. A.; Rao, V. J. J. Mol. Cat. A: Chemical 2004, 218, 47. https://doi.org/10.1016/j.molcata.2004.04.010
  27. Hwang, G. W.; Wu, K. Y.; Hua, M. Y.; Lee, H. T.; Chen, S. A. Synth. Met. 1998, 92, 39. https://doi.org/10.1016/S0379-6779(98)80020-9
  28. Amarnath, C. A.; Kim, J.; Kim, K.; Choi, J.; Sohn, D. Polymer 2008, 49, 432. https://doi.org/10.1016/j.polymer.2007.12.005
  29. Rao, P. S.; Satyanarayana, D. N.; Palaniappan, S. Macromolecules 2002, 35, 4988. https://doi.org/10.1021/ma0114638
  30. Lo, M. Y.; Zhen, C.; Lauters, M.; Jabbour, G. E.; Sellinger, A. J. Am. Chem. Soc. 2007, 129, 5808. https://doi.org/10.1021/ja070471m
  31. Shreepathi, S.; Holze, R. Chem. Mater. 2005, 17, 4078. https://doi.org/10.1021/cm050117s
  32. Wessling, B. Chem. Innov. 2001, 35.
  33. Avnir, D.; Kaufman, V. R.; Reisfeld, R. J. Non-Cryst Solids 1985, 74, 395. https://doi.org/10.1016/0022-3093(85)90081-X

Cited by

  1. Microstructure and properties of novel fluorescent pyrene functionalized PANI/P(VDF-HFP) blend vol.131, pp.8, 2013, https://doi.org/10.1002/app.40163
  2. Small molecular hole-transporting materials (HTMs) in organic light-emitting diodes (OLEDs): structural diversity and classification vol.6, pp.31, 2018, https://doi.org/10.1039/C8TC01300D
  3. A dielectric study of interpolymer complexes of polyaniline and DNA vol.471, pp.None, 2011, https://doi.org/10.1016/j.colsurfa.2015.02.002
  4. Pyrenylpyridines: Sky-Blue Emitters for Organic Light-Emitting Diodes vol.4, pp.16, 2011, https://doi.org/10.1021/acsomega.9b01948