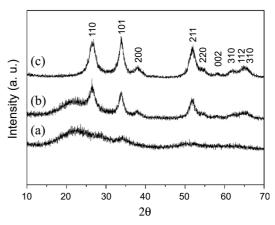
Formation of the SnO₂ Network with Hollow Structure from Water-Ethanol Mixed Solvent

Moon-Jin Hwang and Kwang-Sun Ryu^{†,*}

Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 680-749, Korea [†]Department of Chemistry, University of Ulsan, Ulsan 680-749, Korea. ^{*}E-mail: ryuks@ulsan.ac.kr (Kwang-Sun Ryu) Received November 16, 2010, Accepted March 25, 2011


Key Words: SnO₂, SnO₂ hollow, Nanostructure, Ethanol, Solvent

The SnO_2 network with hollow structures were obtained from SiO_2/SnO_2 core-shell powder in water-ethanol mixed solvents at mild experimental conditions. $SnCl_2$ as SnO_2 source reacts partially with H_2O and forms an insoluble salts in water $(SnCl_2 + H_2O \rightarrow Sn(OH)Cl(s))$. This salts formation may be not desirable to protect an aggregation of Sn based materials, but we expect that the controllable addition of water into absolute alcohol containing Sn^{2+} ions and hydrophilic SiO_2 spheres could help to promote the formation of homogeneous core-shell composites. It is suggested that a simple removal of SiO_2 template and a facile separation of porous structure can be obtained from the formation of SnO_2 network with hollow structure.

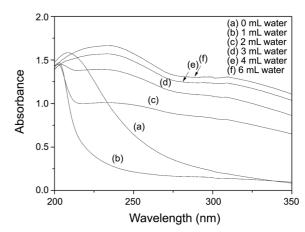

SiO₂ spheres were prepared according to well-known Stöber method.² SiO₂ with about 300 nm was obtained from the mixing of 0.2 M TEOS (tetraethylorthosilicate), 17 M H₂O, and 0.6 M NH₄OH in ethanol. SiO₂ was washed several times with ethanol and distilled water and heated at 350 °C. The 0.5 g of SiO₂ powder was added to 50 mL ethanol with ultrasonic wave irradiation. The 0.5 g of SnCl₂·2H₂O was dissolved in the water-ethanol solution containing x mL water and 50-x mL ethanol (x = 0, 1, 2, 3, 4, and 6). The solution containing Sn²⁺ ions was added slowly into the solution containing SiO2 particles with stirring. The mixed solution was heated at 80 °C until the solvent was reduced to about 10 mL. The reduced solution was kept at room temperature until all solvent was evaporated. The resultant SiO₂/SnO₂ precursors were dried at 100 °C. SiO₂/SnO₂ particles were prepared by heating of SiO₂/SnO₂ precursors at 350 °C for 5 hrs. SnO₂ hollow structures were obtained by the removal of SiO₂ from SiO₂/ SnO₂ particles with 1 N NaOH aqueous solution for 2 days. SnO₂ hollow structures were washed eight times with distilled water without centrifugation.

Figure 1 shows the representative XRD patterns of the samples. As shown in Figure 1(a), the peaks of SiO_2/SnO_2 precursor obtained from pure ethanol contain both of the peaks of an amorphous SnO_2 precursor and the broad peak of an amorphous SiO_2 , centered at $2\theta = 21.34^{\circ}$ in the range of 15-25°. When SiO_2/SnO_2 precusor was heated at 350 °C, a tetragonal SnO_2 phase was observed, as shown in Figure 1(b). In Figure 1(c), the peaks of SnO_2 hollow structure prepared from water-ethanol mixed solvent with 1 ml water were identified as SnO_2 (JCPDS file No. 01-070-6153) with a tetragonal lattice.

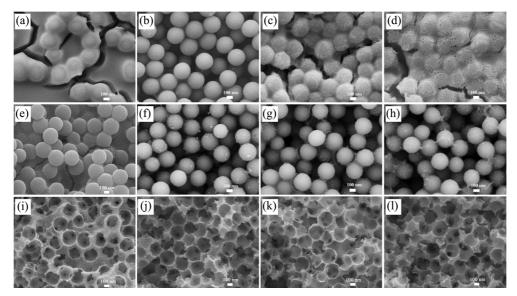

Figure 2 shows the UV-vis spectra of SiO₂ dispersed in water-ethanol mixed solvent with x mL water and (100-x) mL ethanol at room temperature. The UV absorption band of SiO₂ dispersed in pure ethanol solvent was centered at around 208 nm, whereas the center of absorption band of SiO₂ in water-ethanol mixed solvent with 1 mL water was shifted to lower wavelength, which is centered at around 205 nm, and its band width became narrower, as shown in Figure 2(a and b). In case of SiO₂ in water-ethanol mixed solvent with 2 mL water, the UV absorption shoulder located below 213 nm was centered at around 203 nm and the increase of

Figure 1. The representative XRD patterns of (a) SiO₂/SnO₂ precursor, (b) SiO₂/SnO₂ particle, and (c) SnO₂ hollow structure (a: b: pure ethanol, c: 1 mL water).

Figure 2. UV-vis spectra of the ethanol solutions containing SiO_2 and various amount of water (a: 0 mL, b: 1 mL, c: 2 mL, d: 3 mL, e: 4 mL, and f: 6 mL water).

Figure 3. The representative SEM images of (a-d) SiO₂/SnO₂ precursors coated on a slide glass, (e-h) SiO₂/SnO₂ particles, and (i-l) SnO₂ hollow structures from different amount of water (0-6 mL).

absorbance between 213 nm and 350 nm was observed in Figure 2(c). In general, the change of UV-vis absorption band depends on the degree of solvent polarity and of solvent shell formation on solute.³ It can be understood that the increase of solvent polarity by adding water into ethanol induces blue shift of UV absorption band with increasing electronic transition energy between ground state and excited state of SiO₂ (Figure 2(a-d)). It is estimated that the broad absorption bands above 213 nm are caused by the increase of turbidity and the effect of solvent shell containing large water molecules on SiO₂ resulting in the decrease of electronic transition energy (Figure 2(c-f)).

Figure 3 show the SEM images of the samples. Figure 3(ad) shows the different shapes of SiO₂/SnO₂ precursors coated on a slide glass. SiO₂/SnO₂ precursors were prepared from water-ethanol mixed solvent with 0, 2, 4, and 6 mL water. The shape of discrete SiO₂ particles coated with SnO₂ precursors were obtained from pure ethanol. It indicates that the interaction force between SiO2 and SnO2 precursor is relatively weak. The homogeneous SiO₂/SnO₂ precursors were obtained from the mixed solvent with 2 mL water. The increase of shell thickness with increasing the amount of water from 4 mL to 6 mL was caused by the increase of hydrated Sn²⁺ on SiO₂. Figure 3(e-h) shows the shapes of SiO₂/SnO₂ particles prepared after heating of SiO₂/SnO₂ precursors at 350 °C. After heating, the reduced shell thickness is because H₂O was removed from the hydrated form coated on SiO₂, as shown in Figure 3(g and h). Figure 3(i-l) shows the shapes of SnO₂ hollow structures after the removal of SiO₂ from SiO₂/SnO₂ particles. The network structures with irregular pore shapes were observed in Figure 3(i, k, and 1). The SnO₂ network with homogeneous pore sizes was obtained from water-ethanol mixed solvent with 2 mL water, as shown in Figure 3(j).

Table 1 lists the EDS element analysis results for SiO₂/

Table 1. EDS data of SiO₂/SnO₂ particles and SnO₂ hollow structures

Sample	Composition of water-ethanol solvent		Weight % of element				
	Water	Ethanol	Si	О	Sn	Cl	Na
SiO ₂ / SnO ₂	0	100	35.81	36.64	27.05	0.50	-
	2	98	37.19	38.77	23.53	0.51	-
	4	96	34.04	33.09	32.14	0.73	-
	6	94	43.07	32.26	24.11	0.56	-
SnO ₂ hollow	0	100	0.94	17.12	80.70	0.44	0.80
	2	98	0.87	17.43	80.74	0.23	0.73
	4	96	0.82	16.26	81.68	0.33	0.91
	6	94	0.71	21.51	76.41	0.25	1.12

SnO₂ particles and SnO₂ hollow structures. The EDS results show that the Cl element contents were reduced to 0.50-0.73 wt % during heating process of SiO₂/SnO₂ precursors. After NaOH treatment and several washing process, the Si contents of SnO₂ hollow structures were 0.71-0.94 wt %.

It is expected that the facile formation of SnO₂ network with hollow structure can increase the yield efficiency in mild separation process and reduce the efforts and the energies to obtain SnO₂ hollow structure.

Acknowledgments. This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0093818).

References

- Ibarguen, C. A.; Mosquera, A.; Parra, R.; Castro, M. S.; Rodríguez-Páez, J. E. Mater. Chem. Phys. 2007, 101, 433.
- 2. Stöber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62.
- 3. Sukul, N. C.; Sukul, A. *High dilution effect: physical and Biochemical Basis*; Kluwer Academic Publishers: Netherland, 2004; p 60.