참고문헌
- Friedman, N., Linial, M., Nachman, I., and Pe'er, D. (2000). Using Bayesian networks to analyze expression data. J Comput Biol 7, 601-620. https://doi.org/10.1089/106652700750050961
- Hirose, O., Yoshida, R., Imoto, S., Yamaguchi, R., Higuchi, T., Charnock-Jones, D.S., Print, C., and Miyano, S. (2008). Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics 24, 932-942. https://doi.org/10.1093/bioinformatics/btm639
- Martin, S., Zhang, Z., Martino, A., and Faulon, J.L. (2007). Boolean dynamics of genetic regulatory networks inferred from microarray time series data. Bioinformatics 23, 866-874. https://doi.org/10.1093/bioinformatics/btm021
- Opgen-Rhein, R., and Strimmer, K. (2007). Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process. BMC Bioinformatics 8 Suppl 2, S3.
- Shmulevich, I., Gluhovsky, I., Hashimoto, R.F., Dougherty, E.R., and Zhang, W. (2003). Steady-state analysis of genetic regulato-ry networks modelled by probabilistic boolean networks. Comp Funct Genomics 4, 601-608. https://doi.org/10.1002/cfg.342
- Ching, W.K., Zhang, S., Ng, M.K., and Akutsu, T. (2007). An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks. Bioinformatics 23, 1511-1518. https://doi.org/10.1093/bioinformatics/btm142
- Gelenbe, E. (1991). Product-form queueing networks with nega-tive and positive customers. Journal of Applied Probability, 656-663.
- Gelenbe, E. (1993). G-networks with triggered customer move-ment. Journal of Applied Probability 742-748.
- Gelenbe, E. (2007). Steady-state solution of probabilistic gene regulatory networks. Phys Rev E Stat Nonlin Soft Matter Phys 76, 031903. https://doi.org/10.1103/PhysRevE.76.031903
- Kim, H., and Gelenbe, E. (2009). Anomaly detection in gene expression via stochastic models of gene regulatory networks. BMC Genomics 10 Suppl 3, S26.
- Marshall, C.J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179-185. https://doi.org/10.1016/0092-8674(95)90401-8
- Markowetz, F., Kostka, D., Troyanskaya, O.G., and Spang, R. (2007). Nested effects models for high-dimensional phenotyping screens. Bioinformatics 23, i305-312. https://doi.org/10.1093/bioinformatics/btm178
- Boutros, M., Agaisse, H., and Perrimon, N. (2002). Sequential activation of signaling pathways during innate immune res-ponses in Drosophila. Dev Cell 3, 711-722. https://doi.org/10.1016/S1534-5807(02)00325-8
- Tresch, A., and Markowetz, F. (2008). Structure learning in Nested Effects Models. Stat Appl Genet Mol Biol 7, Article9.
- Sneppen, K., Krishna, S., and Semsey, S. (2010). Simplied Models of Biological Networks. Annual review of biophysics, 39:43 https://doi.org/10.1146/annurev.biophys.093008.131241
- Little, J.W. (1983). The SOS regulatory system: control of its state by the level of RecA protease. J Mol Biol 167, 791-808. https://doi.org/10.1016/S0022-2836(83)80111-9
- Cai, L., Friedman, N., and Xie, X.S. (2006). Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358-362. https://doi.org/10.1038/nature04599
- Thattai, M., and van Oudenaarden, A. (2001). Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci U S A 98, 8614-8619. https://doi.org/10.1073/pnas.151588598
- Golding, I., Paulsson, J., Zawilski, S.M., and Cox, E.C. (2005). Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025-1036. https://doi.org/10.1016/j.cell.2005.09.031
- Paulsson, J. (2005). Models of stochastic gene expression. Physics of life reviews 157-175.
- McAdams, H.H., and Arkin, A. (1997). Stochastic mechanisms in gene expression. Proc Natl Acad Sci U S A 94, 814-819. https://doi.org/10.1073/pnas.94.3.814
- Paulsson, J., Berg, O.G., and Ehrenberg, M. (2000). Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regula-tion. Proc Natl Acad Sci U S A 97, 7148-7153. https://doi.org/10.1073/pnas.110057697
- Marianayagam, N.J., Sunde, M., and Matthews, J.M. (2004). The power of two: protein dimerization in biology. Trends Bio-chem Sci 29, 618-625. https://doi.org/10.1016/j.tibs.2004.09.006
- Buchler, N.E., Gerland, U., and Hwa, T. (2005). Nonlinear protein degradation and the function of genetic circuits. Proc Natl Acad Sci U S A 102, 9559-9564. https://doi.org/10.1073/pnas.0409553102
- Gelenbe, E. (2008). Network of interacting synthetic molecules in steady state. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 464(2096).
피인용 문헌
- Stochastic Gene Expression Modeling with Hill Function for Switch-Like Gene Responses vol.9, pp.4, 2012, https://doi.org/10.1109/TCBB.2011.153
- Reconstruction of Large-Scale Gene Regulatory Networks Using Bayesian Model Averaging vol.11, pp.3, 2012, https://doi.org/10.1109/TNB.2012.2214233
- A queueing approach to multi-site enzyme kinetics vol.4, pp.3, 2011, https://doi.org/10.1098/rsfs.2013.0077
- EROL GELENBE: A CAREER IN MULTI-DISCIPLINARY PROBABILITY MODELS vol.30, pp.3, 2011, https://doi.org/10.1017/s0269964816000024
- G-NETWORKS AND THEIR APPLICATIONS TO MACHINE LEARNING, ENERGY PACKET NETWORKS AND ROUTING: INTRODUCTION TO THE SPECIAL ISSUE vol.31, pp.4, 2011, https://doi.org/10.1017/s0269964817000171