DOI QR코드

DOI QR Code

Fluoride and nitrate removal in the decentralized water treatment plants by electroadsorption using carbon nano-tube electrodes

소규모 급수 시설의 불소 및 질산성질소 이온 제거를 위한 탄소나노튜브 전극을 활용한 전기흡착 연구

  • Han, Song-Hee (Department of Semiconductor & Display Engineering, Graduate School of BK21, Hoseo University) ;
  • Chang, In-Soung (Department of Environmental Engineering, Hoseo University) ;
  • Chae, Ki-Woong (Department of Materials Science & Engineering, Hoseo University) ;
  • Joung, Seun-Young (KumKang Engineering Corporation) ;
  • Lee, Cheol-Ku (KumKang Engineering Corporation)
  • 한송희 (호서대학교 대학원 BK21 반도체디스플레이공학과) ;
  • 장인성 (호서대학교 환경공학과) ;
  • 채기웅 (호서대학교 신소재공학과) ;
  • 정선용 ((주)금강엔지니어링) ;
  • 이철구 ((주)금강엔지니어링)
  • Received : 2011.04.26
  • Accepted : 2011.06.09
  • Published : 2011.06.30

Abstract

Water qualities in the decentralized water treatment plants do not frequently satisfy the water standard limit, in particular, fluoride and nitrate are notorious for the poor removal. In this study, an electro-adsorption equipped with carbon nonotube (CNT) electrodes were carried out to effectively remove the nitrate and fluoride in the decentralized water treatment plants. Two types of CNT electrodes, coating and sintering electrodes were applied. Coating electrodes were made based on different kinds of binder and sintering electrodes were made based on different sintering temperature. Removal of fluoride and nitrate when the coated electrodes with organic binder were used for electro-adsorption were 46 and 99.9% respectively, which were better performances than the coated electrodes with inorganic binder were used. On the other hand, removal of fluoride and nitrate when the electrodes sintered at higher temperature ($1,000^{\circ}C$) were 77 and 87% respectively, which were better performances than the electrodes sintered at lower temperature ($850^{\circ}C$). As a consequences, the electro-adsorption equipped with a CNT electrodes could be an potential alternative process for the removal of fluoride and nitrate in a decentralized water treatment plants if proper current density and contact time were applied.

본 연구에서는 소규모 수도시설에서 수질기준을 자주 초과하는 항목으로 지적되고 있는 불소와 질산성질소를 효과적으로 제거하기 위하여, 탄소나노튜브를 이용한 전극을 제작하여 전기흡착 공정에 적용함으로써 두 종류의 무기이온 제거 가능성을 평가하였다. 탄소나노튜브를 활용한 전극을 제작하기 위해 코팅 (coating)법과 소결(sintering)법을 이용하여 전극을 제작하였다. 코팅전극은 바인더의 종류, 소결전극은 소결온도를 변화시켜 각각의 전극을 제작하였다. 제작된 전극을 이용하여 전류밀도 및 반응시간 등을 변화시켜가며 전기흡착 실험을 진행한 결과 유기바인더를 이용해 제작된 전극의 이온제거율은 불소 46%, 질산성질소 99.9%로 무기바인더를 이용하여 제작된 전극보다 제거효율이 우수하였다. 또한 소결하여 제작된 탄소나노튜브 중 $1000^{\circ}C$ 고온에서 제작한 전극은 불소 77%, 질산성질소 87%의 제거율을 보여 $850^{\circ}C$ 저온에서 제작한 전극보다 더 높은 제거효율을 보임을 확인하였다. 적당한 전류밀도 및 반응시간 하에서 모두 먹는 물 수질 기준에 적합한 농도로 처리될 수 있음을 보임으로써, 탄소나노튜브를 활용하여 제작한 전극을 채택한 전기흡착 공정이 소규모 수도시설에 적합한 공정으로 평가받을 수 있을 것으로 판단된다.

Keywords

References

  1. Hong-Tae Kim et al., "The study on methods for effective improvement at the small water supply system", Journal of Korean Society of Water Science and Technology, Vol. 15, No. 4, pp. 65-76, 2007.
  2. Ministry of Environment, Test results of the drinking water quality 2008.
  3. Mohamed S. Siddiqui et al.,, "Ozone enhanced removal of natural organic matter from drinking water sources", Water Research, Vol. 31, No. 12, pp. 3098-3106, December 1997. https://doi.org/10.1016/S0043-1354(97)00130-9
  4. R.S. Harisha et al., "Arsenic removal from drinking water using thin film composite nanofiltration membrane", Desalination, Vol. 252, No. 1-3, pp. 75-80, March 2010. https://doi.org/10.1016/j.desal.2009.10.022
  5. Shuji Nakatsuka et al., "Drinking water treatment by using ultrafiltration hollow fiber membranes", Desalination, Vol. 106, No. 1-3, pp. 55-61, August 1996. https://doi.org/10.1016/S0011-9164(96)00092-6
  6. Byung-Uk Bae et al., "Improved brine recycling during nitrate removal using ion exchange", Water Research, Vol. 36, No. 13, pp. 3330-3340, July 2002. https://doi.org/10.1016/S0043-1354(02)00012-X
  7. Jae-Jun Cho et al., "Nitrogen removal by electrochemical oxidation using the tube electrode", Journal of Korean Society of Water and Wastewater, Vol. 18, No. 5, pp. 580-587, 2004.
  8. Joo-Hyun Sim et al., "Study on the improvement of nitrate removal efficiency in multi-step electro-chemical process", Journal of Korean Society of Environmental Engineers, Vol. 30, No. 2, pp. 155-160, 2008.
  9. Hyun-Chul Yu et al., "Electrochemical treatment of wastewater containing fluoride", Journal of Korean Society of Environmental Engineers, Vol. 29, No 10, pp. 1126-1130, 2007.
  10. Ji-Hee Min et al., "The removal of nitrate-nitrogen from ground water by electrodialysis", Journal of Korean Society of Water and Wastewater, Vol. 22, No. 3, pp. 307-314, 2008.
  11. Limda Zou et al., "Using mesoporous carbon electrodes for brackish water desalination", Water Research, Vol. 42, No. 8-9, pp. 2340-2348, April 2008. https://doi.org/10.1016/j.watres.2007.12.022
  12. Nam-Soo Park et al., "Fabrication and characterization of porous carbon electrode for electrosorption ", Journal of Korean Society of Environmental Engineers, Vol. 30, No. 4, pp. 409-414, 2008.
  13. Chun-Mo Yang et al., "Capacitive deionization of NaCl solution with carbon aerogel-silica gel composite electrodes", Desalination, Vol. 174, No. 2, pp. 125-133, April 2005. https://doi.org/10.1016/j.desal.2004.09.006
  14. Baizeng Fang et al., "A modified activated carbon aerogel for high-energy storage in electric double layer capacitors", Journal of Power Sources, Vol. 163, No. 1, pp. 616-622, December 2006. https://doi.org/10.1016/j.jpowsour.2006.09.014
  15. APHA, AWWA, WEF, Standard method for the examination of water and wastewater, 19th edition, USA 1995.