DOI QR코드

DOI QR Code

Communication Equalizer Algorithms with Decision Feedback based on Error Probability

오류 확률에 근거한 결정 궤환 방식의 통신 등화 알고리듬

  • Kim, Nam-Yong (School of Electronics, Info. & Comm. Engineering, Kangwon National University) ;
  • Hwang, Young-Soo (School of Electronics, Info. & Comm. Engineering, Kwandong University.)
  • 김남용 (강원대학교 전자정보통신공학부) ;
  • 황영수 (관동대학교 IT공학부)
  • Received : 2011.03.18
  • Accepted : 2011.05.12
  • Published : 2011.05.31

Abstract

For intersymbol interference (ISI) compensation from communication channels with multi-path fading and impulsive noise, a decision feedback equalizer algorithm that minimizes Euclidean distance of error probability is proposed. The Euclidean distance of error probability is defined as the quadratic distance between the probability error signal and Dirac-delta function. By minimizing the distance with respect to equalizer weight based on decision feedback structures, the proposed decision feedback algorithm has shown to have significant effect of residual ISI cancellation on severe multipath channels as well as robustness against impulsive noise.

이 논문에서는, 통신 채널의 다중경로에 의한 심볼간 간섭 (ISI)과 와 임펄스 잡음을 극복하도록 하기 위해 오류 확률의 유클리드 거리를 최소화하는 결정 궤환 등화 알고리듬을 제안하였다. 오류 확률의 유클리드 거리는 오류 확률과 델타 함수의 차이로 정의하였다. 등화기 가중치에 대해 유클리드 거리를 최소화함으로써 제안한 알고리듬은 임펄스 잡음에 대한 강건성 뿐 아니라 심각한 다중경로 채널의 잔여 ISI를 제거하는 효과를 보였다.

Keywords

References

  1. K. Koike and H. Ogiwara, "Application of Turbo TCM codes for impulsive noise channel," IEICE Trans. Fundamentals, vol. E81-A, pp. 2032-2039, Oct. 1998.
  2. S. Unawong, S. Miyamoto, and N. Morinaga, "A novel receiver design for DS-CDMA systems under impulsive radio noise environments," IEICE Trans. Comm., Vol. E82-B, pp. 936-943, June 1999.
  3. Faber, T. and Scholand, T. "Application of joint source-channel decoding to impulsive noise environments," Vehicular technology conference, VTC2004-Fall, Vol. 2. pp. 1238-1242, 2004. https://doi.org/10.1109/VETECF.2004.1400220
  4. S. J. Kang, N. Kim, "Quality Measurement Algorithm for IS-95 Reverse-link Signal," KAIS, vol. 11, no. 9, pp. 3428-3434, 2010. https://doi.org/10.5762/KAIS.2010.11.9.3428
  5. M. Richharia, Satellite communication systems: design principles, Technology&Engineering,1999.
  6. M. Button, J. Gardiner, and I. A. Glover, "Measurement of the impulsive noise environment for satellite-mobile radio systems at 1.5 GHz," IEEE Trans.Vehicular Technology. vol. 51, no.3, pp. 551-560, May 2002. https://doi.org/10.1109/TVT.2002.1002503
  7. J. Gomes, A. Silva, and S. Jesus, "Joint Passive Time Reversal and Multichannel Equalization for Underwater Communications," in OCEANS 2006, pp. 1-6.
  8. S. Haykin, Adaptive Filter Theory. Prentice Hall. 4th edition, 2001.
  9. J. C. Principe, D. Xu and J. Fisher, Information Theoretic Learningin: S.Haykin, Unsupervised Adaptive Filtering, Wiley, (New York, USA), pp. 265-319, 2000.
  10. K. H. Jeong, J. W. Xu, D. Erdogmus, and J. C. Principe, "A new classifier based on information theoretic learning with unlabeled data," Neural Networks, vol. 18, pp. 719-726, 2005. https://doi.org/10.1016/j.neunet.2005.06.018
  11. N. Kim, K. H. Jeong, and L. Yang, "Maximization of zero-error probability for adaptive channel equalization," Journal of communications and networks, vol. 12, no. 5, pp. 459-465, Oct. 2010. https://doi.org/10.1109/JCN.2010.6388491
  12. J. G. Proakis, Digital Communications, McGraw-Hill, 2nd edition, 1989.
  13. B. Aazhang and H. V. Poor, "Performance of DS/CDMA communications in impulsive channels-Part II: Hard-limiting correlation receivers," IEEE Trans. Comm., vol. 36, pp. 88-97, Jan. 1988. https://doi.org/10.1109/26.2732
  14. S. Miyamoto, M. Katayama and N. Morinaga, "Receiver design using the dependence between quadrature components of impulsive radio noise," IEICE Trans. Comm., vol. J77-B-II, pp. 63-73, Feb. 1994.

Cited by

  1. Euclidean Distance of Biased Error Probability for Communication in Non-Gaussian Noise vol.14, pp.3, 2013, https://doi.org/10.5762/KAIS.2013.14.3.1416
  2. A New Gradient Estimation of Euclidean Distance between Error Distributions vol.51, pp.8, 2014, https://doi.org/10.5573/ieie.2014.51.8.126