DOI QR코드

DOI QR Code

Three Dimensional Stress Analysis of a Dental Implant with Central Cavity

중공을 가지는 치과용 임플란트의 3차원 응력해석

  • Kim, Jin-Gon (School of Mechanical and Automotive Engineering, Catholic University of Daegu) ;
  • Lee, Jae-Kon (School of Mechanical and Automotive Engineering, Catholic University of Daegu)
  • 김진곤 (대구가톨릭대학교 기계자동차공학부) ;
  • 이재곤 (대구가톨릭대학교 기계자동차공학부)
  • Received : 2011.03.09
  • Accepted : 2011.05.12
  • Published : 2011.05.31

Abstract

In this study, we propose a new short dental implant and investigate its bio-mechanical characteristics by using three dimensional finite element analyses. The proposed dental implant has the central cavity which can be integrated with the core of cancellous bone remained by trepanning drill. We take the Bicon short implant as a reference model for studying the effects according to the shape of cavity. The parametric finite element model using ANSYS APDL has been built to determine which length, diameter and thread of central cavity would be effective to dissipate stress. The reduction of undesirable stress in adjacent bone which can suppress bone defects and the eventual failure of implants. The numerical results shows that the cavity of well-determined shape has the beneficial effects on reducing the bone absorption in cancellous bone.

본 논문에서는 중공을 가지는 짧은 치과용 임플란트의 생체역학적인 특성을 3차원 유한요소해석을 통하여 분석하였다. 고려된 치과용 짧은 임플란트는 골유착성을 향상시키기 위해 트리패닝 드링 등에 의해 남겨진 치골과 결합될 수 있는 중공부를 가진다. 연구를 위해 Bicon사의 길이가 짧은 임플란트를 기본 모델로 삼아 중공부가 임플란트 주변 치골의 응력분포에 주는 영향을 분석하였다. 중공부 길이, 직경 및 나사산 등의 형상변수에 따른 반복적인 유한 요소해석을 효과적으로 수행하기 위하여 ANSYS APDL을 이용하여 매개변수화된 유한요소모델을 구성하였다. 해석결과 중공부를 가지는 경우 특히 경사하중 하에서 해면골에서 발생하는 최대응력값이 크게 감소하였으며, 중공부의 형태가 해면골에서의 응력분포에 큰 영향을 주는 것으로 나타났다.

Keywords

References

  1. J. H. Lee, V. Frias, K. W. Lee, R. F. Wright, Effect of Implant Size and Shape on Implant Success Rates: A Literature Review, The Journal of Prosthetic Dentistry, V. 94, No. 4, pp. 377-381, 2005. https://doi.org/10.1016/j.prosdent.2005.04.018
  2. Y. D. Kwon, S. H. Jang, S. H. Park, Stress Analysis of Hybrid Implant Using Finite Element Method, Trans. of the KSME(A), V. 32, No. 3, pp. 290-296, 2008. https://doi.org/10.3795/KSME-A.2008.32.3.290
  3. D. Bozkaya, S. Muftu, A. Muftu, Evaluation of Load Transfer Characteristics of Five Different Implants in Compact Bone at Different Load Levels by Finite Element Analysis, The Journal of Prosthetic Dentistry, V. 92, No. 6, pp. 523-530, 2004. https://doi.org/10.1016/j.prosdent.2004.07.024
  4. J. S. Han, J. S. Kim, J. H. Choi, Three Dimensional Optimum Design of Endosseous Implant in Dentistry by Multilevel Response Surface Optimization, Trans. of the KSME(A), V. 28, No. 7, pp. 940-947, 2004. https://doi.org/10.3795/KSME-A.2004.28.7.940
  5. S. K. Byun, W. H. Park, Y. S. Lee, Three Dimensional Finite Element Stress Analysis of Five Different Taper Design Implant Systems, The Journal of Korean Academy of Prosthodontics, V. 44, No. 5, pp. 584-593, 2006.
  6. L. Himmlova, T. Dostalova, A. Kacovsky, S. Konvickova, Influence of Implant Length and Diameter on Stress Distribution: A Finite Element Analysis, The Journal of Prosthetic Dentistry, V. 91, No. 1, pp. 20-25, 2004. https://doi.org/10.1016/j.prosdent.2003.08.008
  7. Y. H. Seo, M. S. Yang, H. S. Yang, S. W. Park, H. O. Park, H. P. Lim, Three-dimensional Finite Element Analysis of Stress Distribution for Different Implant Thread Slope, The Journal of Korean Academy of Prosthodontics, V. 45, No. 4, pp. 482-491, 2007.
  8. N. Wakabayashi, M. Ona, T. Suzuki, Y. Igarashi, Nonlinear Finite Element Analyses: Advances and Challenges in Dental Applications, Journal of Dentistry, V. 36, pp.463-471, 2008. https://doi.org/10.1016/j.jdent.2008.03.010
  9. L. Guedj, Dental Implants and Boring Instruments for Implanting, US Patent, 5871356, 1999.