DOI QR코드

DOI QR Code

Improvement of Hill Climbing Ability for 6WD/6WS Vehicle using Optimum Tire Force Distribution Method

최적 타이어 힘 분배를 이용한 6WD/6WS 차량의 등판 주행 성능 향상

  • Kim, Sang-Ho (Department of mechanical engineering, Hanyang University) ;
  • Kim, Chang-Jun (Department of mechanical engineering, Hanyang University) ;
  • Han, Chang-Soo (Department of mechanical engineering, Hanyang University)
  • Received : 2011.01.17
  • Accepted : 2011.04.07
  • Published : 2011.04.30

Abstract

Multi-axle driving vehicle are favored for military use in off road operations because of their high mobility on extreme terrains and obstacles. Especially, Military Vehicle needs an ability to driving on hills of 60% angle slope. This paper presents the improvement of the ability of hill climbing for 6WD/6WS vehicle through the optimal tire force distribution method. From the driver's commands, the desired longitudinal force, the desired lateral force, and the desired yaw moment were obtained for the hill climbing of vehicle using optimal tire force distribution method. These three values were distributed to each wheel as the torque based on optimal tire force distribution method using friction circle and cost function. To verify the performance of the proposed algorithm, the simulation is executed using TruckSim software. Two vehicles, the one the proposed algorithm is implemented and the another the tire's forces are equivalently distributed, are compared. At the hill slop, the ability to driving on hills is improved by using the optimum tire force distribution method.

본 다축 차량은 험지와 야전에서 높은 이동성 때문에 비포장도로를 주행해야 하는 군용차량으로 사용된다. 특히 군용차량은 군 요구 사항에 의거 기본적으로 60% 경사로에서 안정적인 등판 성능을 지녀야 한다. 따라서 본 논문은 최적 타이어 힘 분배 방법을 통한 6WD/6WS차량의 등판능력 향상을 다루었다. 경사로 등판 시 사용할 최적 타이어 힘 분배 방법을 위하여 운전자로부터, 목표로 하는 종 방향 힘과 횡 방향 힘, 요 모멘트를 계산하였고, 마찰 원이론과 목적함수에 따른 최적화 된 토크가 각 륜에 분배되었다. 알고리즘 성능을 확인하기 위해서, 트럭심 소프트웨어를 이용하여 시뮬레이션 하였고, 비교를 위하여 2대의 차량을 제안하였다. 한 대의 차량은 최적타이어 힘 분배 방법이 적용되었고, 나머지 한 대는 궤도 차량과 같은 균등 힘 분배 방법이 적용되었다. 경사로에서 등판능력은 최적 타이어 힘 분배 방법에 의해서 향상 되어졌다.

Keywords

References

  1. Y.Hori, Y.Toyota, and Y.Tsuruoka, "Traction control of electric vehicle: Basic experimental results using the test EV, UOT", IEEE Trans. Ind.Applicat, Vol. 34, pp.1131-1138, 1998. https://doi.org/10.1109/28.720454
  2. J. Kang, W. Kim, K Yi and S. Jung, "Skid Steering Based Maneuvering of Robotic Vehicle with Articulated Suspension", SAE, Vol, 645-652, 2009.
  3. D. Kim, C. Kim, Y. Kim, C. Han, "A Study on an Independent 6WD/6WS System for Electric Vehicles using the Optimum Tire Force Distribution," Journal of Institute of Control, Robotics and Systems Vol. 16, No. 7, July 2010.
  4. 신현인, "비무기체계 표준품목의 상용전환 연구", 민군규격통일화사업 보고서, pp. 48-55
  5. Ossama Mokhiamar and Masato Abe, "Simultaneous Optimal Distribution of Lateral and Longitudinal Tire Force for the Model Following Control", Journal of Dynamic Systems, Measurement, and Control, vol. 126, pp. 753-763, 2004. https://doi.org/10.1115/1.1850533
  6. M. Abe and W. Manning, Vehicle Handling Dynamics: Theory and Application, ELSEVIER, Amsterdam, 2009.
  7. Thomas D. Gillespie, Fundamentals of Vehicle Dynamics, SAE, 2009-01-0437, 2009.
  8. Mian Ashfaq Ali, Changjun Kim, Hyunsoo Shin, Jaeho Jang, Changsoo Han, "Study on the Characteristics of Skid Steering for Six Wheel Drive Vehicle (6x6)," KSAE Annual Conference, pp. 325, 2008(In Korea).
  9. Hiroshi Ohnishi, Junichi Ishii, Mitsuo Kayano, Hiroshi Katayama, "A study on road slope estimation for automatic transmission control," JSAE Reveiw, pp.235-240, 2000.
  10. Naoki Ando, Hiroshi Fujimoto, "Yaw-rate Control for Electric Vehicle with Active Front/Rear Steering and Driving/Braking Force Distribution of Rear Wheels", IEEE Int. Workshop Advanced Motion Control, pp. 726-731, 2010.
  11. Martin Larsson, "Road Slope Estimation", Master Thesis, Linkopings universitet, 2010