DOI QR코드

DOI QR Code

질산태 질소 정량을 위한 환원 증류법에서 Devarda's Alloy의 입자크기 및 함량이 미치는 영향

Particle Size Effects of Devarda's Alloy on the Recovery of Nirate N Determined by the Steam Distillation Method

  • 정석호 (충북대학교 환경생명화학과) ;
  • 권현재 (충북대학교 환경생명화학과) ;
  • 정덕영 (충남대학교 생물환경화학과) ;
  • 한광현 (충북대학교 환경생명화학과)
  • Jung, Seok-Ho (Department of EnvironmentBiological Chemistry, Chungbuk National University) ;
  • Kwon, Hyun-Jae (Department of EnvironmentBiological Chemistry, Chungbuk National University) ;
  • Chung, Doug-Young (Department of Bioenviromental Chemistry, Chungnam National University) ;
  • Han, Gwang-Hyun (Department of EnvironmentBiological Chemistry, Chungbuk National University)
  • 투고 : 2011.05.23
  • 심사 : 2011.06.21
  • 발행 : 2011.06.30

초록

본 연구는 환원증류법을 사용하여 축사, 매립지, 시설재배지 등 높은 수준의 질산태 질소로 오염된 토양의 질산태질소 함량을 정확히 측정하는데 있어서, Devarda's alloy 의 입자 크기가 질산태 질소의 회수율에 미치는 효과와 Devarda's alloy의 처리량과 환원된 질산태 질소의 양과의 상관관계, 고농도의 질산태 질소를 함유한 토양 추출액의 정확한 분석을 위한 적절한 접근방법을 파악하고자 수행되었다. 본 연구에서 시험된 각 Devarda's alloy는 입자 크기의 분포가 서로 달랐으며, 이는 다소 높은 질산태 질소 조건인 1 mg과 2 mg $NO_3$-N에서 서로 다른 질산태 질소 회수율로 반영 되었다. 한편, 고농도의 질산태 질소 조건에서는 모든 Devarda's alloy들이 용액 중 질산태 질소의 함량이 증가할수록 급격히 질산태 질소의 회수율이 감소하는 경향을 보였으나, 시험된 모든 Devarda's alloy들은 예상과 달리, 단위 질량 당 환원된 질산태 질소의 양이 용액중 질산태 질소의 양에 비례하여 감소하는 경향을 보였다. 이상의 연구결과들은 높은 수준의 질산태 질소로 오염된 토양 시료를 안정적으로 분석하기 위해서는 Devarda's alloy의 입자 크기 분포를 감안한 충분한 처리, 그리고 두 수준 이상의 Devarda's alloy를 처리한 후 회수된 질산태 질소량 변화를 살피는 것이 필요하다는 것을 제시한다. 아울러, 본 연구에서 발견된 질산태 질소량의 화학적 비당량성은 앞으로의 연구를 통해 보다 자세히 조사되어야 할 것으로 사료된다.

We analyzed the particle size distributions of three commercially available Devarda's alloy (DA) products, tested the nitrate recoveries of each particle size category, and examined the amounts of DA required for 100% recovery by varying $NO_3$-N concentration from 0.5 to 10 mg. We observed that use of DA coarser than 200 mesh resulted in poor analytical recovery (<80%). While the tested alloys were considered to be fine enough (>90% of the particles were less than 100 mesh), the recovery dramatically declined from 80% to 10% in a high concentration range (4 to 10 mg N). Satisfactory recovery was obtained by increasing the amount of finer DA (less than 300 or 450 mesh). However, there was no quantitative relationship between the amount of fine DA and nitrate recovered. Generally, the amount of nitrate reduced per unit DA decreased as the recovery efficiency declined. These results suggest that a sufficient amount of DA must be determined based on particle size distribution, and that treatment of at least two levels of DA and comparison of the subsequent change in nitrate recovery is required for soils containing high levels of nitrate. In addition, further studies are encouraged to account for the observed stoichiometric dis-equivalence of recovered nitrate N per unit mass of DA.

키워드

참고문헌

  1. Baker, A.S. 1967. Colorimetric determination of nitrate in soil and plant extracts with brucine. J. Agric. Food Chem. 15:802-806. https://doi.org/10.1021/jf60153a004
  2. Bergstrom, L. 1987. Nitrate leaching and drainage from annual and perennial crops in tile-drained plots and lysimmeters. J. Envrion. Qual. 16:11-18.
  3. Bremner, J.M. 1965. Inorganic forms of nitrogen. p. 1179-1237. In C.A. Black et al. (ed.) Methods of soil analysis. Part 2. Agron. Monogr. 9. ASA, Madison, WI.
  4. Dancer, W.S. 1975. Leaching losses of ammonium and nitrate in reclamation of sand spoils in corn well. J. Envrion. Qual. 4:499-504.
  5. Heney, R.L., F.M. Haney, M.A. Sanderson, and A.J. Franzluebbers. 2001. A rapid procedure for estimating nitrogen mineralization in manured soil, Biol. Fertil. Soil 33, pp. 100-104. https://doi.org/10.1007/s003740000294
  6. Jung, G.B., I.S. Ryu, and B.Y. Kim. 1994. Soil texture, electrical conductivity and chemical components of soils under the plastic film house cultivation in northern central areas of Korea. Korean J. Soil Sci. Fert. 27:33-40.
  7. Kowalenko, C.G. 1980. Transfort and transformation of fertilizer-N in a sandy field plot using tracer technique. Soil Sci. 129: 218-221. https://doi.org/10.1097/00010694-198004000-00004
  8. Kreitler, C.W. 1977. Nitrogen isotropes of soil and ground water nitrate, Lockhart and Taylor alluvial fans, central Texas. Geol. Soc. Amer. 96:1058-1059.
  9. Lee, K.J. 2008. Nitrate Accumulation in soils and groundwater and fertilizer management for lettuce in plastic film house. Chungbuk National Univercity, Cheongju, Korea.
  10. Mulvaney, R.L. 1996. Nitrogen-inorganic forms. p. 1123-1184. In D. L. Spark et al. (ed.) Methods of soil analysis. Part 3. Chemical properties. SSSA Book Ser. 5. Soil Sci. Soc. Am., Madison, WI.
  11. NIAST. 2000. Analytical method of soil and plant. Suwon, Korea.
  12. Park, B.G., T.H. Jeon, Y.H. Kim, and Q.S. Ho. 1994. Status of farmer's application rates of chemical fertilizer and farm manure for major crops. Korean J. Soil Sci. Fert. 27:238-246.
  13. Shearer, G. and D. H. Kohl. 1993. Natural abundance of 15N: Fractional contribution of two sources to a common sink and use of isotope discrimination. p. 89-125. In R. Knowles and T. H. Blackbrun (Ed.) Nitrogen isotope Techniques. Academic Press. Sandiego, CA.
  14. Yang, J.E., E.O. Skogley, B.E. Schaff, and J.J. Kim. 1998. A simple spectrophotometric Determination of nitrate in water, resin, and soil extract. Soil Sci. Am. J. 62:1108-1115. https://doi.org/10.2136/sssaj1998.03615995006200040036x
  15. Yoo, S.H., W.J. Choi, and G.H. Han. 1999. An invastigation of the sources of nitrate contamination in the Kyonggi province groundwater by isotope ratio analysis of nitrogen. Journal of Korean Society of Soil Science and Fertilizer. 32:47-56.
  16. Yun, S.K. and S.H. Yoo. 1993. Behaviour of $NO_{3}$-N in soil and groundwater quality. Kor. J. Envrion. Agric. 12:281-197.