DOI QR코드

DOI QR Code

Mineral N, Macro Elements Uptake and Physiological Parameters in Tomato Plants Affected by Different Nitrate Levels

  • Sung, Jwa-Kyung (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Lee, Su-Youn (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Kang, Seong-Soo (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Lee, Ye-Jin (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Kim, Ro-Gyoung (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Lee, Ju-Young (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Jang, Byoung-Choon (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Ha, Sang-Keun (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Lee, Jong-Sik (Division of Soil and Fertilizer Management, NAAS, RDA)
  • 투고 : 2011.06.10
  • 심사 : 2011.07.06
  • 발행 : 2011.08.31

초록

The aim of this study was to know whether leaf nitrate can be a substitute of total leaf N to justify plant N status and how nitrate influences macro elements uptake and physiological parameters of tomato plants under different nitrogen levels. Leaf nitrate content decreased in low N, while showed similar value with the control in high N, ranging from 55 to $70mg\;g^{-1}$. Differences in nitrate supply led to nitrate-dependent increases in macro elements, particularly cations, while gradual decrease in P. Physiological parameters, photosynthesis rates and antioxidants, greatly responded in N deficient conditions rather than high N, which didn't show any significant differences compared the control. Considering nitrogen forms and physiological parameters, total-N in tomato plants represented positive relation with growth (shoot dry weight), nitrate and $CO_2$ assimilation, whereas negative relation with lipid peroxidation.

키워드

참고문헌

  1. Aebi, H. 1974. Catalases, in: H. U. Bergmeyer (Ed.). Methods of enzymatic analysis, Academic Press, New York, Vol. 2 : 673-684.
  2. Aires, A., E. Rosa, R. Carvalho, S. Haneklaus, and E. Schnug. 2007. Influence of nitrogen and sulfur fertilization on the mineral composition of broccoli sprouts. J. Plant Nutri. 30: 1035-1046. https://doi.org/10.1080/01904160701394402
  3. Apel, K. and H. Hirt. 2004. Reactive oxygen species: Metabilism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373-379. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  4. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Buchanan-Wollaston, V., S. Earl, E. Harrison, E. Mathas, S. Navabpour, and T. Page. 2003. The molecular analysis of leaf senescence - a genomics approach. Plant Biotech. J. 11:3-22.
  6. Chapman, S.C. and H.J. Barreto. 1997. Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agronomy J. 89:557-562. https://doi.org/10.2134/agronj1997.00021962008900040004x
  7. Chen, L., S.C. Liu, J.Y. Gai, Y.L. Zhu, L.F. Yang, and G.P. Wei. 2009. Effects of nitrogen forms on the growth, ascorbateglutathione cycle and lipid peroxidation in developing seeds of vegetable soybean. African J. of Agrucultural Research 4:1178-1188.
  8. Cho, S.M., K.W. Han, and J.Y. Cho. 1996. Nitrate reductase activity by change of nitrate form nitrogen content on growth stage of radish. Korean J. Environ. Agric. 15:383-390.
  9. Crawford, N.M. and D.M.A. Glass. 1998. Molecular and physiological aspect of nitrate uptake in plants. Trends Plant Sci. 3:389-395. https://doi.org/10.1016/S1360-1385(98)01311-9
  10. Cuypers, A., J. Vangronsveld, and H. Clijsters. 2001. The redox status of plant cells (AsA and GSH) is sensitive to zinc imposed oxidative stress in roots and primary leaves of Phaseolus vulgaris. Plant Physiol. Biochem. 39:657-664. https://doi.org/10.1016/S0981-9428(01)01276-1
  11. Foyer, C.H. and G. Noctor. 2003. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant 119:355-364. https://doi.org/10.1034/j.1399-3054.2003.00223.x
  12. Frink, C.R., P.E. Waggoner, and J.H. Ausubel. 1999. Nitrogen fertilizer: retrospect and prospect. Proc. Natl. Acad. Sci. USA 96:1175-1180. https://doi.org/10.1073/pnas.96.4.1175
  13. Grant, J.J. and G.J. Loake. 2000. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol. 124:21-29. https://doi.org/10.1104/pp.124.1.21
  14. He, F.F., Q. Chen, R.F. Jiang, X.P. Chen, and F.S. Zhang. 2007. Yield and nitrogen balance of greenhouse tomato (Lycopersiocon esculuntum Mill.) with conventrional and site-specific nitrogen management in northern china. Nutr. Cycl. Agroecosyst. 77: 1-14. https://doi.org/10.1007/s10705-006-6275-7
  15. Heath, R.L. and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics ad stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189-198. https://doi.org/10.1016/0003-9861(68)90654-1
  16. Hirsch, R.E. and M.R. Sussman. 1999. Improving nutrient capture from soil by the genetic manipulation of crop plants. Trends Biotechnol. 17:356-361. https://doi.org/10.1016/S0167-7799(99)01332-3
  17. Jang, H.G. and S.J. Chung, 1997. A study of sap analysis for the establishment of nutrient diagnosis method. J. Bio. Fac. Env. 6:310-316.
  18. Juszczuk, I., E. Malusa, and A.M. Rychter. 2001. Oxidative stress during phosphate deficiency in roots of bean plants (Phaseolus vulgaris L.). J. Plant Physiol. 158:1299-1305. https://doi.org/10.1078/0176-1617-00541
  19. KREI. 2009. Korea Rural Economic Institute. www. krei.re.kr
  20. Logan, B.N., B. Demmig-Adams, T.N. Rosenstiel, and W.W. Adams III. 1999. Effect of nitrogen limitation on foliar antioxidants in relationship to other metabolic characteristics. Planta 209:213-220. https://doi.org/10.1007/s004250050625
  21. Lutts, S., J.M. Kinet, and J. Bouharmont. 1996b. Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. Plant Growth Reg. 19:207-218. https://doi.org/10.1007/BF00037793
  22. Mukherjee, S.P. and M.A. Choudhari. 1983. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in vigna seedling. Physiol. Plant 58:166-170. https://doi.org/10.1111/j.1399-3054.1983.tb04162.x
  23. Nathawat N.S., M.S. Kuhad, C.L., Goswami, A.L. Patel, and R. Kumar. 2007. Interactive effects of nitrogen source and salinity on growth indices and ion content of Indian mustard. J. Plant Nutr. 30:569-598. https://doi.org/10.1080/01904160701209329
  24. Neill, S., R. Desikan, and J. Hancock. 2002. Hydrogen peroxide signaling. Curr. Opin. Plant Biol. 5:388-395. https://doi.org/10.1016/S1369-5266(02)00282-0
  25. Noctor, G. and C.H. Foyer. 1998. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:249-279. https://doi.org/10.1146/annurev.arplant.49.1.249
  26. Peng, S., F.V. Garcia., R.C. Laza, and K.G. Cassman. 1993. Adjustment for specific leaf weight improves chlorophyll meter's estimate of rice leaf nitrogen concentration. Agronomy J. 85:987-990. https://doi.org/10.2134/agronj1993.00021962008500050005x
  27. Piekielek, W.P., R.H. Fox., J.D. Toth, and K.E. Macneal. 1995. Use of a chlorophyll meter at the early dent stage of corn to evaluate nitrogen sufficiency. Agronomy J. 87:403-408. https://doi.org/10.2134/agronj1995.00021962008700030003x
  28. Scott, C.C. and H.J. Barreto. 1997. Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agronomy J. 89:557-562. https://doi.org/10.2134/agronj1997.00021962008900040004x
  29. Shaobing, P.M., R.C. Laza, F.V. Garcia, and K.G. Cassman. 1995. Chlorophyll meter estimates leaf area-based nitrogen concentration of rice. Commun. Soil Sci. Plant Anal. 26: 927-935. https://doi.org/10.1080/00103629509369344
  30. Tabatabaei, S.J., M. Yusefi, and J. Hajiloo. 2008. Effects of shading and $NO^{-}_{3}\;:\;NH_{4}^{+}$ ratio on the yield, quality and N metabolism in strawberry. Sci. Hortic. 116:264-272. https://doi.org/10.1016/j.scienta.2007.12.008
  31. Westcott, M.P. and J.M. Wraith. 1995. Correlation of leaf chlorophyll reading and stem nitrate concentration in peppermint. Commun. Soil Sci. Plant Anal. 26:1481-1490. https://doi.org/10.1080/00103629509369385
  32. Walinga, I., W. Van Vark, V.J.G. Houba, and J.J. Van der Lee. 1989. Soil and plant analysis : Part 7. Plant analysis procedures. Wageningen Agricultural Univ., Wageningen, The Netherlands. pp. 264.
  33. von Wiren, N., S. Gazzarrini, and W.B. Frommer. 1997. Regulation of mineral nitrogen uptake in plants. Plant and Soil 196: 191-199. https://doi.org/10.1023/A:1004241722172

피인용 문헌

  1. Temporal Changes in N Assimilation and Metabolite Composition of Nitrate-Affected Tomato Plants vol.45, pp.6, 2012, https://doi.org/10.7745/KJSSF.2012.45.6.910