DOI QR코드

DOI QR Code

시설딸기재배지 토양에서 염류농도가 미생물 생태에 미치는 영향

Effects of Electrical Conductivity on the Soil Microbial Community in a Controled Horticultural Land for Strawberry Cultivation

  • Lee, Young-Han (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Ahn, Byung-Koo (Jeollabuk-do Agricultural Research and Extension Services) ;
  • Sonn, Yeon-Kyu (National Academy of Agricultural Science, RDA)
  • 투고 : 2011.08.27
  • 심사 : 2011.10.03
  • 발행 : 2011.10.31

초록

시설딸기 재배지에서 염류농도가 생육초기 토양 미생물 생태계의 변화에 미치는 영향을 FAME 분석으로 검토하였다. 토양 총 세균 함량, 그람음성 세균 함량, 그람양성 세균 함량, 방선균 함량, 곰팡이 함량, 내생균근균 함량은 염류농도가 높은 토양이 적정한 토양 보다 유의적으로 높았다 (p<0.01). 토양 환경 스트레스 지표로 사용되는 cy17:0과 16:$1{\omega}7c$ 그리고 cy19:0과 18:$1{\omega}7c$ 비율은 상대적으로 염류농도가 적정한 토양에서 낮은 경향을 보여 토양 환경 스트레스가 적은 것으로 판단 되었으나 유의적인 차이는 없었다. 총 세균, 그람음성 세균, 그람양성 세균, 방선균, 곰팡이 및 내생균근균 군집은 염류농도가 높은 시험구가 염류농도가 적정한 시험구에 비해 유의적으로 높은 경향이었다.

Total soil microbial activities have great impact to soil management for organic farming. This study was evaluated in the soil microbial community by fatty acid methyl ester (FAME) in a controlled horticultural field for strawberry organic farm. Experimental plots were prepared with a high level of soil electrical conductivity (EC) and a optimum level of soil EC. Soil microbial biomasses and communities of total bacteria, Gram-negative bacteria, Gram-positive bacteria, actinomycetes, fungi, and arbuscular mycorrhizal fungi in the high level of soil EC were significantly larger than those in the optimum level of soil EC. Lower ratios of cy17:0 to 16:$1{\omega}7c$ and cy19:0 to 18:$1{\omega}7c$ were found in the optimum level of soil EC than those in the high level of soil EC, indicating that microbial stress decreased.

키워드

참고문헌

  1. Balser, T., K.K. Treseder, and M. Ekenler. 2005. Using lipid analysis and hyphal length to quantify AM and saprotrophic fungal abundance along a soil chronosequence. Soil Biol. Biochem. 37:601-604. https://doi.org/10.1016/j.soilbio.2004.08.019
  2. Bossio, D.A. and K.M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 35:265-278. https://doi.org/10.1007/s002489900082
  3. Bradleya, K., A. Rhae, R.A. Drijberb, and J. Knopsc. 2006. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 38:1583-1595. https://doi.org/10.1016/j.soilbio.2005.11.011
  4. Choi, M.T., J.I. Lee, Y.U. Yun, J.E. Lee, B.C. Lee, E.S. Yang, and Y.H. Lee. 2010a. Characteristics of fertility on strawberry cultivated soil of plastic film house in Chungnam ProvinceinKorea.Korean J. Soil Sci. Fert. 43(2):160-165.
  5. Choi, M.T., J.I. Lee, Y.U. Yun, J.E. Lee, B.C. Lee, E.S. Yang, and Y.H. Lee. 2010b. Relationship between fertilizer application level and soil chemical properties for strawberry cultivation under greenhouse in ChungnamProvince. Korean J. Soil Sci. Fert. 43(2):153-159.
  6. Drenovsky, R.E. 2004. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb. Ecol. 48:424-430. https://doi.org/10.1007/s00248-003-1063-2
  7. Frostegard, A., A. Tunlid, and E. Baath. 1993. Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl. Environ. Microbiol. 59:3605-3617.
  8. Grogan, D.W. and J.E. Cronan. 1997. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol. Mol. Biol. Rev. 61:429-441.
  9. Guckert, J.B., M.A. Hood, and D.C. White. 1986. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in cis/trans ratio and proportions of cyclopropyl fatty acid. Appl. Environ. Microbial. 52:794-801.
  10. Hamel, C., K. Hanson, F. Selles, A.F. Cruz, R. Lemke, B. McConkey, and R. Zentner. 2006. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie. Soil Biol. Biochem. 38:2104-2116. https://doi.org/10.1016/j.soilbio.2006.01.011
  11. Jo, I.S. and M.H. Koh. 2004. Chemical changes in agricultural soils of Korea: data review and suggested countermeasures. Environ. Geochem. Hlth. 26:105-117. https://doi.org/10.1023/B:EGAH.0000039573.05245.cc
  12. Kieft, T.L., E. Wilch, K. O'connor, D.B. Ringelberg, and D.C. White. 1997. Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms. Appl. Environ. Microbiol. 63:1531-1542.
  13. Kim, E.S. and Y.H. Lee. 2011. Response of soil microbial communities to applications of green manures in paddy at an early rice-growing stage. Korean J. Soil Sci. Fert. 44(2):221-227. https://doi.org/10.7745/KJSSF.2011.44.2.221
  14. Lee, Y.H. and H. Kim. 2011. Response of soil microbial communities to different farming systems for upland soybean cultivation. J. Korean Soc. Appl. Biol. Chem. 54(3):423-433. https://doi.org/10.3839/jksabc.2011.066
  15. Lee, Y.H. and S.K. Ha. 2011. Impacts of topography on microbial community from upland soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44(3):485-491. https://doi.org/10.7745/KJSSF.2011.44.3.485
  16. Lee, Y.H. and S.T. Lee. 2011. Comparison of microbial community of orchard soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44(3):492-497. https://doi.org/10.7745/KJSSF.2011.44.3.492
  17. Lee, Y.S., J.H. Kang, K.J. Choi, S.T. Lee, E.S. Kim, W.D. Song, and Y.H. Lee. 2011. Response of soil microbial communities to different cultivation systems in controlled horticultural land. Korean J. Soil Sci. Fert. 44(1):118-126. https://doi.org/10.7745/KJSSF.2011.44.1.118
  18. Macalady, J.L., M.E. Fuller, and K.M. Scow. 1998. Effects of metam sodium fumigation on soil microbial activity and community structure. J. Environ. Qual. 27:5463.
  19. Min, S.G., S.S. Park, and Y.H. Lee. 2011. Comparison of soil microbial communities to different practice for strawberry cultivation in controlled horticultural land. Korean J. Soil Sci. Fert. 44(3):479-484. https://doi.org/10.7745/KJSSF.2011.44.3.479
  20. NIAST. 2000. Methods of analysis of soil and plant. National Institute of Agricultural Science and Technology, Suwon, Korea.
  21. NIAST. 2005. Annual report of the monitoring project on agro-environmental quality in 2004. RDA, Suwon, Korea.
  22. NIAST. 2009. Annual report of the monitoring project on agro-environmental quality in 2008. RDA, Suwon, Korea.
  23. Olsson, P.A., R. Francis, D.J. Read, and B. Sderstrm. 1998. Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction with other soil micro-organisms as estimated by measurement of specific fatty acids. Plant Soil 201:916.
  24. Park, B.G., T.H. Jeon, Y.H. Kim, and Q.S. Ho. 1994. Status of farmers' application rates of chemical fertilizer and farm manure for major crops. Korean J. Soil Sci. Fert. 27(3):238-246.
  25. RDA (Rural development administration). 2009. Farming textbook of Strawberry. RDA, Suwon, Korea.
  26. SAS. 2006. SAS enterprise guide Version 4.1. SAS Inst., Cary, NC.
  27. Schutter, M.E. and R.P. Dick. 2000. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci. Soc. Am. J. 64:1659-1668. https://doi.org/10.2136/sssaj2000.6451659x
  28. Steenwerth, K.L., L.E. Jackson, F.J. Calderon, M.R. Stromberg, and K.M. Scow. 2003. Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biol. Biochem. 35:489-500. https://doi.org/10.1016/S0038-0717(03)00028-2
  29. Tagliavini, M., D. Scudellari, B. Marangoni, and M. Toselli. 1996. Nitrogen fertilization in orchards to reconcile productivity and environmental aspects. Fertil. Res. 43:93-102. https://doi.org/10.1007/BF00747687
  30. Zelles, L. 1997. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275-294. https://doi.org/10.1016/S0045-6535(97)00155-0

피인용 문헌

  1. Effect of Expeller Cake Fertilizer Application on Soil Properties and Red Mustard (Brassica Juncea L.) Yield in Soil of Organic Farm of Plastic Film Greenhouse vol.45, pp.6, 2012, https://doi.org/10.7745/KJSSF.2012.45.6.1022
  2. Characteristics of Fertility of Cucumber Cultivated Soils at Controlled Horticulture in Chungnam Province vol.47, pp.4, 2014, https://doi.org/10.7745/KJSSF.2014.47.4.262
  3. Impacts of Soil Texture on Microbial Community of Orchard Soils in Gyeongnam Province vol.48, pp.2, 2015, https://doi.org/10.7745/KJSSF.2015.48.2.081
  4. Analysis of Soil Microbial Communities Formed by Different Upland Fields in Gyeongnam Province vol.47, pp.2, 2014, https://doi.org/10.7745/KJSSF.2014.47.2.100
  5. Variation of Microbial Communities with Crop Species in Controlled Horticultural Soils of Gyeongnam Province vol.46, pp.3, 2013, https://doi.org/10.7745/KJSSF.2013.46.3.182
  6. Management of Recycled Nutrient Resources using Livestock Waste in Large-Scale Environment-Friendly Agricultural Complex vol.45, pp.2, 2012, https://doi.org/10.7745/KJSSF.2012.45.2.177