DOI QR코드

DOI QR Code

A molecular dynamics simulation on the defect structure in silicon under indentation

분자동력학 해석을 이용한 인덴테이션시 실리콘 내부의 결함구조에 관한 연구

  • Trandinh, Long (Division of Mechanical and Automotive Engineering, Kongju National University) ;
  • Ryu, Yong-Moon (Korea Automotive Technology Institute) ;
  • Kang, Woo-Jong (School of Mechanical and Automotive Engineering, Kyungil University) ;
  • Cheon, Seong-Sik (Division of Mechanical and Automotive Engineering, Kongju National Universily)
  • Published : 2011.04.30

Abstract

,In this paper, the symmetric axis parameter method, which was proposed to identify defects, dislocations and stacking fault, with perfect structures in the zinc-blende materials, was introduced as a way to distinguish between elastic and plastic deformation. LAMMPS, a molecular dynamics programme of Sandia National Laboratories, was used to perform nanoindentation simulation on silicon, a zinc-blende material. Defects in silicon (111) under spherical indentation showed the threefold pattern and the slip system in the form of ring crack. Also simulation results show good agreement with experimental results and existing theoretical analyses.

본 논문에서는 zinc blende계열의 결정구조를 갖는 실리콘 내부의 결함을 분석할 수 있는 대칭축 파라메터 (Symmetric axis parameter)방법을 이용하여, 탄성 및 소성 변형을 구별하는 방법을 제시하였다. 분자 동력학 해석프로그램인 LAMMPS를 사용하여, 실리콘에 대한 나노인덴테이션 해석을 수행하였다. 구형 인덴터 아래에 발생한 실리콘내부의 결함은 ring crack에서의 threefold 무늬와 전위발생경로를 보여주였다. 또한, 해석결과는 기존의 이론이나, 실험결과와도 일치하는 것을 확인하였다.

Keywords

References

  1. L. Trandinh, A.K. Kim, S.S. Cheon, "Nanoindentation behaviours of silver film/copper substrate," Journal of Korean Society for composite materials, Vol. 22, 2009, pp. 9-17.
  2. E.O. Hall, "The deformation and ageing of mild steel: m. Discussion of results," Proceedings of the Physical Society B 64, 1951, 747-753. https://doi.org/10.1088/0370-1301/64/9/303
  3. N.J. Petch, "The cleavage strength of polycrystals," Journal of the Iron and Steel Institute, Vol. 174, 1953, pp. 25-8.
  4. V.V. Bulatov, S. Yip, A.S. Argon, "Atomic modes of dislocation mobility in silicon," Philosophical Magazine A Vol. 72, 1995, pp. 453-496. https://doi.org/10.1080/01418619508239934
  5. A. George, S. Yip, "Preface to the Viewpoint Set on: -Dislocation mobility in silicon," Scripta Materialia, Vol. 45 2001, pp. 1233-1238. https://doi.org/10.1016/S1359-6462(01)01155-1
  6. K. Higashida, T. Kawamura, T. Morikawa, Y. Miura, N. Narita, "HVEM observation of crack tip dislocations in silicon crystals," Materials Science and Engineering A Vol. 319-321, 2001, pp. 683-686. https://doi.org/10.1016/S0921-5093(01)00957-1
  7. K. Asaoka, T. Urneda, S. Arai, H. Saka, "Direct evidence for shuffle dislocations in Si activated," Materials Science and Engineering A, Vol. 400-401, 2001, pp. 93-96.
  8. G.S. Smith, E.B. Tadmor, N. Bernstein, E. Kaxiras, "Multiscale simulations of silicon nanoindentation," Acta Materialia, Vol. 49, 2001, pp. 4089-4101. https://doi.org/10.1016/S1359-6454(01)00267-1
  9. R.W. Armstrong, A.W. Ruff, H. Shin, "Elastic, plastic and cracking indentation behavior of silicon crystals," Materials Science and Engineering A, Vol. 209, 1996, pp. 91-96. https://doi.org/10.1016/0921-5093(95)10148-9
  10. T., Vodenitcharova, L.C. Zhang, "A mechanics prediction of the behaviour of mono-crystalline silicon under nano-indentation," International Journal of Solids and Structures, Vol. 40, 2003, pp. 2989-2998. https://doi.org/10.1016/S0020-7683(03)00119-7
  11. I. Zarudi, L.C. Zhang, "Structure changes in mono -crystalline silicon subjected to indentation experimental findings," Tribology International, Vol. 32, 1999, pp. 701-712. https://doi.org/10.1016/S0301-679X(99)00103-6
  12. E.R. Weppelmann, J.S. Field, M.V. Swain, "Observation, analysis, and simulation of the hysteresis of silicon using ultra-micra-indentation with spherical indenters," Journal of Materials Research, Vol. 8, 1993, pp. 830-840. https://doi.org/10.1557/JMR.1993.0830
  13. J. Jang, M.J. Lance, S. Wen, T.Y. Tsui, G.M. Pharr, "Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior," Acta Materialia, Vol. 53 (2005) 1759-1770. https://doi.org/10.1016/j.actamat.2004.12.025
  14. R. Perez, M.C. Payne, A.D. Simpson, "First principles simulations of Silicon nanoindentation," Physical Review Letters, Vol. 75, 1995. pp. 4748-4754.
  15. J.S. Kallmann, W.G. Hoover, C.G. Hoover, A.J. De Groot, S.M. Lee, F. Wooten "Molecular dynamics of silicon indentation," Physical Review B, Vol. 47, 1993, pp. 7705-7713. https://doi.org/10.1103/PhysRevB.47.7705
  16. F.H. Stillinger, T.A. Weber, "Computer simulation of local order in condensed phases of silicon," Physical Review B, Vol. 31, 1985, pp. 5262-5271. https://doi.org/10.1103/PhysRevB.31.5262
  17. V. Gavini, K. Bhattacharya, M. Ortiz, "Vacancy clustering and prismatic dislocation loop formation in aluminum," Physical Review B, Vol. 76, 2007, 180101. https://doi.org/10.1103/PhysRevB.76.180101
  18. A.F. Bower, Applied Mechanics of Solids, 1st ed., CRC Press 2009, Boca Raton.
  19. C. Kelchner, S.J. Plimpton, J.C Hamilton, "Dislocation nucleation and defect structure during surface indentation," Physical Review B, Vol. 58, 1998, pp. 11085-11088. https://doi.org/10.1103/PhysRevB.58.11085
  20. J.P. Hirth, J. Lethe, Theory of Dislocations, 2nd ed., Wiley Interscience, New York, 1982.
  21. W.C. O'Mara, R.B. Herring, L.P. Hunt, Handbook of Semiconductor Silicon Technology, Noyes, New Jersey, 1990.
  22. J. Tersoff, "New empirical approach for the structure and energy of covalent systems," Physical Review B, Vol. 37, 1988, pp. 6991-7000. https://doi.org/10.1103/PhysRevB.37.6991
  23. S.J. Plimpton, B.A. Hendrickson, In: Broughton J, Bristowe P, Newsam J, (editors). Materials theory and modelling, MRS Proceedings, Vol. 291, 1993, Pittsburg, pp. 37.
  24. E.T. Lilleodden, J.A. Zimmerman, S.M Foiles, W.D Nix, "Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation," Journal of the Mechanics and Physics of solids, Vol. 51, 2003, pp. 901-920. https://doi.org/10.1016/S0022-5096(02)00119-9
  25. A. Hull, D.J. Bacon, Introduction to Dislocations, 4th ed., Butterworth-Heinemann, Oxford, 2001, Chap.4.
  26. Y.B Gerbig, S.J. Stranick, R.F. Cook, "Point defect interaction with dislocations in silicon," Scripta Materialia, Vol. 63, 2010, pp. 512-515. https://doi.org/10.1016/j.scriptamat.2010.05.017